Production and use of H$_2$O$_2$ for atom-efficient functionalization of hydrocarbons and small molecules

Neil M. Wilson,† Daniel T. Bregante,† Pranjali Priyadarshini and David W. Flaherty*

DOI: 10.1039/9781788010634-00122

H$_2$O$_2$ is a relatively benign and selective oxidant, which has motivated research into scalable methods for H$_2$O$_2$ production and the design of catalysts to perform oxidations with H$_2$O$_2$. The energy intensive anthraquinone oxidation process is the standard for H$_2$O$_2$ production, however, alternatives such as electrocatalytic oxygen reduction and the direct synthesis of H$_2$O$_2$ have significant potential. Recent publications have investigated the reactor design, the mechanism for H$_2$O$_2$ formation, and the synthesis of increasingly selective catalysts and have demonstrated the role of proton–electron transfer in H$_2$O$_2$ formation and improving selectivities by alloying transition metals. H$_2$O$_2$ is a relatively unstable molecule which readily decomposes over a catalyst, making it difficult to use H$_2$O$_2$ for many oxidation reactions selectively. As such, there is extensive research on the use of H$_2$O$_2$ for different oxidation reactions, with the most common being olefin epoxidation. Olefin epoxidation is readily catalyzed by transition metal substituted zeolites, polyoxometallates, metal oxides, and homogeneous coordination compounds. These catalysts activate H$_2$O$_2$ to form many reactive intermediates, which possess selectivities for the epoxidation of olefins that reflect electronic properties of the reactive intermediate and the substrate. Ideally, H$_2$O$_2$ could be used for epoxidations within a single reactor (i.e., tandem catalysis), which would reduce costs from purification and transportation of H$_2$O$_2$. However, performing these reactions together typically provides poor epoxidation selectivities due to over-oxidation products. These chemistries are industrially relevant and present many unanswered questions of fundamental interest that warrant future investigation.

1 Overview of H$_2$O$_2$ production and use

1.1 H$_2$O$_2$ as a green oxidant to replace chlorine

Selective oxidations are used at the industrial scale in the manufacture of many familiar products used today. The activation of strong C–H bonds in alkanes and the epoxidation of alkenes by selective oxidants are involved in the synthesis of building block chemicals (e.g., ethylene oxide, propylene oxide, adipic acid) used to produce indispensable materials (e.g., polyurethane, nylon, and polyethylene terephthalate).¹² Oxidations are important also in the non-destructive bleaching of paper,³ the disinfection of wastewater,⁴⁵ and the deactivation of chemical warfare agents.⁶ Many of these oxidations are currently accomplished through the use of chlorinated oxidizers; however, their potential for severe environmental impact motivate the replacement of Cl containing oxidants with those derived from O$_2$ such as H$_2$O$_2$ (the focus of this review) as well as O$_2$ and O$_3$, which are more environmentally benign.

Department of Chemical and Biomolecular Engineering, University of Illinois
Urbana-Champaign, Urbana, IL 61801, USA. E-mail: dwflhrty@illinois.edu
†Contributed equally.
However, as discussed below, there are significant environmental and economic barriers to overcome before chlorinated oxidants can be replaced.

Chlorine containing compounds (e.g., Cl₂, NaClO) are often used for oxidations³,⁴ because they are not only selective but also inexpensive and available in large quantities from the chlor-alkali process. This well-established process converts brine (NaCl solution) into Cl₂, H₂, and caustic soda (NaOH) by electrolysis and is practiced on an incredible scale (4.5 × 10⁷ tons Cl₂ produced and 1.5 × 10¹¹ kWh energy consumed annually).⁷,⁸ Consequently, the use of Cl₂ has become engrained in many industrial processes, such as oxidations, despite the difficulties and dangers associated with use and storage of large quantities of Cl₂.⁷,⁹ Cl₂ can be insidious, and even when proper care is taken, it may be released into the environment where it forms carcinogenic and corrosive residues (e.g., chlorinated dioxins, chloroform).¹⁰–¹² Figure 1 shows that environmental dioxin contamination near Lake Huron increased roughly in proportion to the scale of the chlor-alkali industry in the United States during the past century. While there is evidence for the negative impact of Cl contamination (Fig. 1), there is still much that is unknown about the scale and potential environmental impact of the contamination in the air and soil.¹³,¹⁴ United States federal regulation standards require that potential contaminants be proven undoubtedly hazardous prior to implementing regulatory actions (or changes in regulations),¹⁵ therefore, little governmental regulation has been put in place to limit environmental Cl exposure. Currently, only 65% of all Cl consumed is used in the

![Figure 1](image-url)

Fig. 1. Concentration of dioxin contamination in four separate samples from Lake Huron (solid lines) and total chlorine (short dash) and coal (long dash) output in the U.S. in millions of tons between 1870 and 1980. Reproduced from J. Thornton, *Pandora’s Poison: Chlorine, Health, and a New Environmental Strategy*, Figure 5.2; © 2000 Massachusetts Institute of Technology, by permission of the MIT Press.
manufacture of Cl-containing products (i.e., those that must necessarily use Cl, which include polyvinyl chloride (PVC), inorganics such as HCl, chlorofluorocarbons, pesticides, etc.). Thus, nearly 35% of all Cl produced is used needlessly in oxidations whose products do not contain Cl. Moreover, demand for Cl₂ (and not NaOH) drives the volume of production in the chlor-alkali industry. Finally, many Cl-mediated oxidations use basic solutions (e.g., NaOH) downstream to eliminate Cl from intermediates but produce large amounts of salt and organic wastes. Consequently, these processes are far from being atom-efficient and following the tenants of green chemistry. Thus, large-scale implementation of alternative oxidants in industrial processes may dramatically decrease the overall amount of Cl₂ produced and thereby reduce its environmental impact.

The substitution of Cl₂ with an alternative oxidant, however, is non-trivial because of numerous practical and economic demands of industrial oxidants, in addition to considerable investment in the design and construction of existing processes. Aside from Cl₂, acids (e.g., HNO₃, H₂SO₄, HClO₄) and NOₓ compounds are effective oxidants, but these compounds are also environmentally noxious and highly corrosive, and consequently present similar problems with emission control and safe-handling that plague chlorinated oxidants. Molecular oxygen (O₂) is a potential alternative that is both benign and abundant. Unfortunately, O₂ lacks the reactivity and selectivity to be useful for functionalizing hydrocarbons in many cases (one notable exception being the epoxidation of ethylene (C₂H₄) on Ag catalysts), and so O₂ is an unlikely candidate to directly replace chlorinated oxidizers in current processes. O₂ can, however, be converted into more reactive species such as ozone or hydrogen peroxide. Ozone (O₃) is formed by exposing O₂ to an electrical discharge or UV-light, but this method is both expensive and slow. Further, O₃ tends to react non-specifically and is highly toxic. Hydrogen peroxide (H₂O₂) is a strong oxidizer with significant potential to replace Cl₂ because H₂O₂ possesses desirable chemical selectivity, forms benign byproducts (e.g., H₂O), and is more safely stored and transported. Consequently, the volume of H₂O₂ consumed has increased by a factor of five over a 20 year period (Table 1). Unfortunately, the current cost of

Table 1	Consumption of H₂O₂ in North America in 10³ t.**			
Pulp and paper	32	144	340	410
Textile	28	34	40	63
Chemical	44	52	59	75
Environmental	10	23	31	66
Other	30	39	41	67
Total	**144**	**292**	**511**	**681**

**Estimate.

*Includes captive use.

**Includes mining industry.
H$_2$O$_2$ (52 kmol$^{-1}$) is greater than that for Cl$_2$ (20 kmol$^{-1}$),
which together with stoichiometric arguments (i.e., one mole of Cl$_2$ can oxidize two moles of reactant while H$_2$O$_2$ can only oxidize one) demonstrates that economic considerations favor the continued use of Cl$_2$. Thus, the high cost of H$_2$O$_2$ is the predominant factor that has limited its implementation in new chemical plants, therefore, reducing the cost of H$_2$O$_2$ is a necessary first step to begin the process of replacing chlorinated oxidants.

1.2 Current H$_2$O$_2$ production methods and future directions

Currently more than 95% of all H$_2$O$_2$ is produced via the anthraquinone auto-oxidation process (AO).

This process is well-established and forms H$_2$O$_2$ with high selectivity (≥99%), however, AO suffers from several economic and environmental drawbacks. AO requires a significant number of unit operations. First, H$_2$O$_2$ forms as dilute solutions (0.8–1.9 wt%) in an organic solvent using two sequential reactors for the reduction and oxidation of the anthraquinone substrate. Second, crude aqueous H$_2$O$_2$ solutions are generated by liquid–liquid extraction (to 15–40 wt%) and these are subsequently purified and concentrated by energy-intensive distillation steps (to 50–70 wt%).

Additionally, the insolubility of anthraquinones in aqueous solutions requires the use of hazardous organic solvents (e.g., benzene, xylene, alkyl phosphates). These requirements cause AO to only be economically viable for large-scale production (>4×104 tons year$^{-1}$), and therefore, make on-site production of H$_2$O$_2$ (a desirable option for reducing transportation costs) infeasible in many applications. The hydrogen peroxide–propylene oxide (HPPO) process is one notable exception which demonstrates the potential for on-site H$_2$O$_2$ production to transform industrial oxidations, as discussed later in Section 2.1.

Alternative approaches for the formation of H$_2$O$_2$, which do not face the challenges of AO and might be feasible for small on-site facilities, include electrochemical O$_2$ reduction, photocatalytic O$_2$ reduction, and direct synthesis of H$_2$O$_2$. The electrocatalytic two-electron oxygen reduction reaction (ORR, O$_2$ + 2H$^+$ + 2e$^-$ → H$_2$O$_2$) is one such approach.

This reaction has the advantage that the chemical energy lost from non-selective H$_2$ conversion to H$_2$O can be partially recovered as electrical energy, but the reaction is driven by applying an electrical over-potential across a proton exchange membrane and requires corrosive alkali solutions for proton conductivity. While electrochemical processes could possibly be scaled up, they require electrical energy derived from a source higher in energy (e.g., chemical energy derived from shale gas or renewable sources), therefore, direct use of chemical energy in the form of H$_2$ may be a more energy efficient method for producing H$_2$O$_2$. Another alternative approach is the absorption of UV light by a semiconductor (typically TiO$_2$), which leads to the excitation of electrons to the conduction band and subsequent reduction of O$_2$, followed by reaction with protons from the solution to form H$_2$O$_2$. Unfortunately, photon-mediated methods give low rates and produce only micromolar concentrations of H$_2$O$_2$, which are useful primarily for environmental remediation of dilute contaminants in situ and other niche applications. Therefore, photoelectrochemical H$_2$O$_2$
production could not easily be intensified and coupled with an industrial oxidation process. Similarly low \(\text{H}_2\text{O}_2 \) formation rates and yields plague a number of other \(\text{H}_2\text{O}_2 \) synthesis approaches including electrical discharge (\textit{i.e.}, plasma) driven reactions of \(\text{O}_2 \) with \(\text{H}_2 \)\(^{35}\) and the oxidation of \(\text{CO} \) in the presence of water and a catalyst (\(\text{CO} + \text{O}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{O}_2 + \text{CO}_2 \))\(^{36}\).

One of the most promising alternatives to the AO process is the direct synthesis of \(\text{H}_2\text{O}_2 \) (\(\text{H}_2 + \text{O}_2 \rightarrow \text{H}_2\text{O}_2 \)), which can achieve high yields (up to 10 wt\% \(\text{H}_2\text{O}_2 \))\(^{37}\) requires less energy to operate than AO (\textit{i.e.}, fewer separation and concentration steps), and may be reasonably scaled to small facilities for on-site use.\(^{25}\) In addition, the price of \(\text{H}_2 \) has decreased substantially over the past 10 years due to the concomitant drop in the price of shale gas (from \$10.5 \text{ MBTU}^{-1} \) in 2005 to \$2.6 \text{ MBTU}^{-1} \) in 2015),\(^{38,39}\) which makes direct synthesis of \(\text{H}_2\text{O}_2 \) formation more appealing than the other alternatives to AO. The selectivity to \(\text{H}_2\text{O}_2 \) in direct synthesis, however, is much lower on benchmark Pd catalysts (\(\sim 60\% \))\(^{40,41}\) than that of the AO process (\(>99\% \)).\(^{23}\) As such, wide-spread use of \(\text{H}_2\text{O}_2 \) will likely follow the development of significantly more selective catalysts and efficient processes for the direct synthesis of \(\text{H}_2\text{O}_2 \).\(^{37}\) Recent progress towards understanding the mechanism of the direct synthesis reaction, the influence of the composition and structure of metal cluster catalysts, and the effects of solvents and supports are discussed in Section 3.

1.3 Applications for \(\text{H}_2\text{O}_2 \) as an industrial oxidant

Oxidation reactions are ubiquitous in the chemical industry. These reactions play an integral role in the production of a number of products used in everyday life, such as epoxy resins, plastics, fuel additives, surfactants and medicines.\(^{42,43}\) However, many oxidizers such as heavy metals,\(^{44}\) \(\text{HNO}_3 \),\(^{45,46}\) permanganates,\(^{47}\) and organic (\textit{e.g.}, \(\text{tBuOOH} \)) and chlorinated (\textit{e.g.}, \(\text{NaClO} \) and \(\text{ClO}_2 \)) molecules produce toxic or corrosive byproducts which require additional separation and purification steps, and thus have high capital and operating costs.\(^{48-50}\) In contrast, \(\text{H}_2\text{O}_2 \) is a green oxidant, which can produce precursors for high value chemicals, agricultural products, pharmaceuticals, and electronic products where high purity products are desired.\(^{42,51-57}\) Importantly, oxidation reactions that use \(\text{H}_2\text{O}_2 \) are selective and produce only \(\text{H}_2\text{O} \) as a byproduct, therefore, \(\text{H}_2\text{O}_2 \) also finds applications in oxidative removal of compounds from the environment.\(^{42}\)

Various categories of reactants can be oxidatively functionalized by \(\text{H}_2\text{O}_2 \) (perhaps at large scales) including alkanes,\(^{51,52,58-61}\) alkenes,\(^{54-56,62-66}\) alcohols,\(^{42,57,67,68}\) aldehydes,\(^{69}\) sulfides,\(^{43}\) thioethers,\(^{70}\) and sulfoxides.\(^{70}\) Oxidation of small alkanes and alkenes provide useful building block oxygenates. Specifically, activation of methane and ethane leads to the formation of important products like methanol, ethanol, acetic acid and acetaldehyde.\(^{58,71}\) Current production methods, however, use harsh reaction conditions, require high energy input, and give non-selective oxidations that indirectly form the desired small oxygenates.\(^{51}\) For example, steam reforming of methane to produce synthesis gas mixtures used to form small alcohols requires high temperatures (800–1400 K).\(^{72}\) Ethylene, a precursor for ethanol production by hydration, is produced by cracking
of ethane or mixed hydrocarbons. These indirect methods of oxygenate production require massive amounts of energy and result in high emissions of greenhouse gases like CO₂. Hence, significant effort has been directed towards one-step selective methods for the conversion of lower alkanes to useful oxygenates. Aldehydes, ketones, carboxylic acids, and epoxides are obtained by oxidations of alcohols and alkenes and are important building blocks for polymers, fuel additives, and platform chemicals. Work by Davy in 1820 involved the oxidation of ethanol with air over a Pt catalyst and was among the first in this area. Alcohols are often oxidized using Cr or Mn catalysts in toxic organic solvents (e.g., dimethylsulfoxide (DMSO), chloroform) and with halogen-containing organic oxidizers (e.g., NaOCl and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)). However, many of these reactions are non-selective, yielding a myriad of by-products, which require extensive separation. H₂O₂ is effective for oxidations of primary and secondary alcohols as well as benzylic alcohols and eliminate the need for halides and organic solvents. Oxidations of sulfides to sulfoxides and sulfones (i.e., common moieties in commodity chemicals and pharmaceuticals) traditionally use chlorinated oxidants, permanganates, or organic oxidants. However, none of these processes have been found to be scalable to high capacities because of low O₂ content, unwanted by-products, and high costs. H₂O₂ is a potential oxidant for this chemistry, as shown by previous results that demonstrate the success of H₂O₂ in combination with a W catalyst and a phase transfer catalyst for the oxidation of sulfides to sulfoxides and sulfones. Apart from these activities, ongoing research aims to use transition metal based catalysts (e.g., Nb, W, Ti) to deactivate chemical warfare agents via oxidation of the alkyl and aromatic sulfides to the corresponding sulfoxides and sulfones. Yet, overall, the most important category of industrial chemicals which can be produced by oxidation by H₂O₂ are likely epoxides, which have been the focus of significant study among researchers.

1.4 Catalysts for activating H₂O₂ for epoxidation reactions

Epoxides are an important class of commodity and specialty chemicals that are widely used in the production of epoxy resins, plastics, surfactants, fragrances, and pharmaceutical agents. Many epoxides are currently produced on an industrial scale using oxidants which are either toxic or lead to toxic by-products such as with the chlorohydrin process and the hydroperoxide process using styrene monomers and adipic acid production by HNO₃ oxidation. H₂O₂ can be an environmentally benign and economic replacement for these harmful oxidants, as demonstrated by the success of the HPPO process. However, H₂O₂ will only replace halogenated compounds in epoxidations if catalysts used for H₂O₂ activation can achieve sufficiently high selectivities, rates, and stabilities while being easily removed from the product stream for catalyst recovery. Previous reviews have focused on olefin epoxidation catalysts that use H₂O₂ as the oxidant, and so, this review highlights selected classes of epoxidation catalysts, spectroscopic evidence for the critical
active intermediates (i.e., reactive forms of oxygen) stabilized by these materials, and recent improvements in catalyst design.

Catalysts for epoxidations can largely be classified as transition-metal substituted zeolites,\(^{89,93}\) supported and unsupported metal oxides,\(^{94}\) polyoxometalates,\(^{1,87}\) and coordination compounds.\(^{92}\) Substituted zeolites are formed by the incorporation of metal atoms into a microporous, crystalline framework comprised mainly of tetrahedral silica units (i.e., \([\text{SiO}_4]\)) and can possess incredible chemical and thermal stability.\(^{95}\) Unfortunately, there has been limited success in creating zeolite catalysts that are regioselective for epoxidation when multiple types of C=C bonds (e.g., cyclic vs. terminal) are present.\(^{96}\) Furthermore, the vast majority of the active sites of substituted zeolites are located within small pores (typically <0.7 nm), which inhibit the diffusion of molecules with relatively large kinetic diameters from accessing the \(\text{H}_2\text{O}_2\)-activated metal centers.\(^{97,98}\) Metal oxide epoxidation catalysts consist of either homogeneous organometallic compounds (e.g., methyltrioxorhenium)\(^99\) or heterogeneous metal oxide clusters (e.g., \(\text{Al}_2\text{O}_3\),\(^{100}\) \(\text{ZrO}_2\),\(^{101}\) \(\text{TiO}_2\),\(^{66,102}\) \(\text{Nb}_2\text{O}_5\)\(^{103,104}\), typically grafted onto a mesoporous support (e.g., \(\text{SiO}_2\), glassy carbon).\(^{105}\) Homogeneous metal oxides are highly active for epoxidation reactions, but require subsequent separation steps to remove the catalyst from the product stream.\(^{106,107}\) Heterogeneous metal oxides have been synthesized to achieve atomically dispersed metal centers,\(^{108}\) increasing the utilization of the metal used. However, the catalyst's activity can vary over orders of magnitude depending on the metal identity.\(^{89}\) Polyoxometalates (POMs) are polyatomic ions (most typically anions) that form three-dimensional structures (e.g., Dawson-, Keggin-clusters) by the coordination of multiple transition metal atoms via bridging oxygen atoms.\(^{87,109–111}\) The most common POMs investigated for epoxidation are W-based POMs, due to their high intrinsic propensity to react with \(\text{H}_2\text{O}_2\), forming an activated complex.\(^{87}\) The first POMs discovered for epoxidation chemistries were soluble peroxotungstates that required extraction from the reactant pool to recover the products and catalyst.\(^{112}\) Since then, many researchers have either immobilized the POMs onto a support\(^{113}\) or created catalytic systems from which the inactive complex precipitates.\(^{114}\) Homogeneous coordination complexes (generally organometallic compounds) tend to be the most active and selective catalysts used for \(\text{H}_2\text{O}_2\) activation in olefin epoxidation. Coordination compounds consist of neutral or ionic ligand molecules covalently bound to a central metal atom.\(^{115}\) Additionally, careful ligand design allows for the enantioselective epoxidation of olefins, which is necessary for the production of pharmaceutical active ingredients.\(^{88}\) Among these, this review will discuss three classes of coordination compounds, methyltrioxorhenium, transition metal porphyrin, and Schiff-base complexes.\(^{86,92,116}\)

2 Processes for the production of \(\text{H}_2\text{O}_2\)

2.1 Anthraquinone auto-oxidation

The first commercial AO process for \(\text{H}_2\text{O}_2\) production was implemented by the German company IG Farben in the 1940s with a production
capacity of one ton H$_2$O$_2$ per day.20 Since then, many more AO process facilities have been commissioned by companies such as Solvay,117 Evonik,118 and Arkema,119 which give a combined production capacity of over 3\times10^3$ kt H$_2$O$_2$ year$^{-1}$.119–121 These modern facilities produce H$_2$O$_2$ through a complex series of steps that can be classified roughly by the type of unit operation: hydrogenation, oxidation, extraction, and concentration.20,24 Figure 2 shows these primary unit operations as well as several necessary auxiliary units (\textit{e.g.}, catalyst regeneration, working solution recovery).

The anthraquinone substrates are first hydrogenated using molecular hydrogen (H$_2$) in the presence of a catalyst (Pd black,24 RANEYNi,20,24), which is suspended in solution or supported on a fixed bed. Organic solvents are needed to solvate the reactants in each reactor; quinones (\textit{i.e.}, oxidized anthraquinones) require potentially toxic solvents such as benzene122 or xylene,123 while hydroquinones (\textit{i.e.}, hydrogenated anthraquinones) need complex alkyl phosphates,124 carbamates,125 or carbonamides.126 During hydrogenation, the conversion of the quinones is kept below 60\% to minimize secondary hydrogenation of the aromatic ring, which would need to be subsequently re-aromatized.20 Suspended RANEYNi has been commonly used for the hydrogenation process, however, Ni readily hydrogenates the aromatic ring of 2-alkylanthraquinone, is easily deactivated by oxygen and H$_2$O$_2$,127 and is pyrophoric.22 As such, Pd black (\textit{i.e.}, highly porous Pd supported on SiO$_2$ or Al$_2$O$_3$) now replaces RANEYNi as a hydrogenation catalyst in several AO facilities.22 Pd black

![Fig. 2](image-url)
Fig. 2 Block-flow diagram for the production of H$_2$O$_2$ by the AO process. (a) Storage tank for working solution or hydrogenator feed tank; (b) hydrogenator; (c) safety filtration; (d) oxidizer; (e) separator; (f) activated carbon adsorber; (g) extraction; (h) drying; (i) pre-purification; (j) crude product storage tank; (k) hydrogen peroxide concentration; (l) hydrogen peroxide storage tank; (m) demineralized water feed tank; (n) regeneration and purification; (o) solvent storage tank; (p) working solution make up tank; (q) catalyst regeneration. Reproduced from G. Goor, J. Glennberg and S. Jacobi, \textit{Ullmann’s Encyclopaedia of Industrial Chemistry: Hydrogen Peroxide}, 2007, p. 401. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
is more stable and easier to handle than RANEY® Ni, but Pd still catalyzes the ring saturation of 2-alkylanthraquinone, albeit to a lesser extent. Both RANEY® Ni and Pd deactivate with time on stream, presumably by accumulation of surface carbon, and consequently, these catalysts are regenerated periodically by high temperature (523–973 K) oxidative treatments with steam, strong oxidants, inorganic acids, or air.

Hydrogenation of the aromatic rings on substituted anthraquinones can be mitigated by adding inhibiting molecules (e.g., NH₃, water-soluble amines, or ammonium salts) to the reduction-reaction solution or by using functionalized resin supports (e.g., lipophilic resins like polydecyl methacrylate)-methyl methacrylate (PDMA-MMA) and polystyrene-divinylbenzene (PS-DVB) instead of metal oxides (e.g., SiO₂, Al₂O₃). More selective hydrogenation catalysts for AO are still being identified, and nano-sized amorphous alloys such as Ni/B and Ni/Cr/B show promise. Ni-B supported on SBA-15 and Ni–Cr–B gives nearly 100% H₂O₂ yield, and suppresses nearly all secondary hydrogenation reactions. Evidence from X-ray diffraction (XRD), transmission electron microscopy (TEM), and H₂ temperature programmed desorption (TPD), suggest that hydrogen atoms bind more strongly to Ni atoms on these Ni–B surfaces, which may help prevent the hydrogenation of the aromatic rings and increase H₂O₂ yields.

Hydroquinones produced by hydrogenation are then oxidized using air in the absence of a catalyst in order to regenerate the quinones and form H₂O₂ in a separate reactor. This oxidation process occurs spontaneously (i.e., in the absence of a catalyst) and proceeds through a free radical chain mechanism (Scheme 1). Overall H₂O₂ yields decrease significantly if the metallic hydrogenation catalyst is not completely removed from the working solution, because the metal surfaces readily

decompose \(\text{H}_2\text{O}_2 \) to \(\text{H}_2\text{O} \) and \(\text{O}_2 \). Therefore, the hydrogenation catalyst is thoroughly filtered from the hydroquinone working solution prior to entering the oxidation reactor.\(^{20,24}\) \(\text{H}_2\text{O}_2 \) yields during oxidation increase with the rate of \(\text{O}_2 \) transport into the working solution,\(^{132}\) therefore, venturi tubes\(^ {133}\) or static mixers are used to thoroughly mix the working solution with a reactant air stream to increase concentrations of dissolved \(\text{O}_2 \).\(^ {134}\)

After oxidation is complete, the working solution containing the \(\text{H}_2\text{O}_2 \) product is sent to a liquid–liquid extractor where \(\text{H}_2\text{O}_2 \) is extracted into an aqueous stream. Residual \(\text{H}_2\text{O} \) is removed from the working solution by adsorption onto activated carbon,\(^ {24}\) and the working solution is then cleaned of degradation products by treatment with an alkaline substrate,\(^ {135}\) alkali hydroxide,\(^ {136}\) aluminum oxide, or liquid \(\text{CO}_2 \).\(^ {24}\) The clean, dry working solution is then recycled to the hydrogenation reactor.\(^ {24}\) Additional anthraquinones are added to this stream to compensate for anthraquinone losses due to non-selective hydrogenation and imperfect \(\text{H}_2\text{O}_2 \) concentration and purification.\(^ {24}\) A countercurrent liquid–liquid extractor contacts the working solution (0.8–1.9 wt\% \(\text{H}_2\text{O}_2 \)) with \(\text{H}_2\text{O} \), which recovers approximately 95\% of the \(\text{H}_2\text{O}_2 \) and produces a crude aqueous product stream of 25–40 wt\% \(\text{H}_2\text{O}_2 \).\(^ {20}\) For off-site applications, the crude \(\text{H}_2\text{O}_2 \) product is concentrated further by distillation to a 50–70 wt\% \(\text{H}_2\text{O}_2 \) solution,\(^ {22,24}\) which is then stabilized against decomposition by the addition of sodium pyrophosphate and sodium stannate, either separately\(^ {137}\) or together.\(^ {138}\) The final \(\text{H}_2\text{O}_2 \) product is stored in inert tanks (e.g., polyethylene or \(\text{HNO}_3 \)-passivated aluminum) to avoid corrosion and \(\text{H}_2\text{O}_2 \) decomposition.\(^ {22,24}\) A significant amount of energy is required to concentrate \(\text{H}_2\text{O}_2 \) by distilling off excess \(\text{H}_2\text{O} \), which contributes in part to the high cost of \(\text{H}_2\text{O}_2 \) produced by AO (550 ton^{-1} of 50 wt\% \(\text{H}_2\text{O}_2 \)).\(^ {139}\) As a result of this energy cost and the large capital cost of the complex process, AO is viable only at large scales (>40×10\(^3\) tons year\(^{-1}\)).\(^ {25}\) Notably, on-site \(\text{H}_2\text{O}_2 \) production (such as for the HPPO process)\(^ {140,141}\) can avoid the need to concentrate the crude aqueous \(\text{H}_2\text{O}_2 \), and in fact, can use more dilute streams based on the \(\text{H}_2\text{O}_2 \) concentrations (e.g., 2–10 wt\%) needed at the adjacent PO production plant.\(^ {142}\)

The world’s first HPPO plant, a joint venture by Dow and BASF in Belgium, was completed in 2009 and possessed a propylene oxide production capacity of \(3\times10^5 \) tons year\(^{-1}\).\(^ {143}\) The \(\text{H}_2\text{O}_2 \) produced on-site is used to epoxidize propylene oxide (PO),\(^ {142}\) which reduces wastewater production by 70–80\%, energy usage by 35\%, and capital investment by 25\%.\(^ {144,145}\) Overall, the integration of an economically feasible, large-scale AO facility (\(2.3\times10^5 \) tons \(\text{H}_2\text{O}_2 \) year\(^{-1}\)) with a propylene epoxidation plant of similar size (\(3\times10^5 \) tons PO year\(^{-1}\)) leveraged economies of scale to make this otherwise economically impossible venture feasible.\(^ {37}\) To date, an additional three HPPO facilities have been constructed or commissioned in locations throughout the world (Evonik and SKC in South Korea,\(^ {146}\) Dow and SGC in Thailand,\(^ {144}\) and Evonik and Uhde in China\(^ {121}\)). Such schemes are not currently possible at the smaller scales typical of many other oxidation chemistries (e.g., paper bleaching,\(^ {3}\) disinfection of wastewater\(^ {4,5}\)), however, the development of an alternative to
AO would enable the cost-effective use of H$_2$O$_2$ as an oxidant for these small scale processes.

2.2 Alcohol oxidation (shell process)

Shell Chemical pioneered the production of H$_2$O$_2$ by oxidation of 2-propanol with an oxygen enriched gas stream (80–90% O$_2$, Scheme 2) in 1957, and the process was used to produce 1.5×10^4 tons of H$_2$O$_2$ annually until 1980.20,22 The reaction is auto-catalyzed by H$_2$O$_2$, and therefore, does not require a metal catalyst, which reduces the rate of secondary decomposition of H$_2$O$_2$. Instead, a small amount of H$_2$O$_2$ is added to the 2-propanol and O$_2$ reactant mixture to initiate the reaction. While simple decomposition of H$_2$O$_2$ is minimal, the H$_2$O$_2$ selectivity is diminished by secondary oxidation reactions that convert 2-propanol to acetone.20,24 These secondary reactions may be reduced by operating at differential conversion (<15%), and the process can achieve high overall H$_2$O$_2$ yields (87–98%).24 The 2-propanol reactant is highly soluble in the peroxide phase, which makes the recovery of the H$_2$O$_2$ by distillation more energy intensive, and therefore, more expensive than AO.20 As a result, the alcohol oxidation (i.e., Shell) process has been mostly discontinued. As an alternative to 2-propanol, the high temperature (393–453 K) oxidation of methylbenzyl alcohol (a co-product from the styrene process for propylene oxide production)147 was investigated and was found to give H$_2$O$_2$ selectivities in the range of 80–97% at approximately 30% alcohol conversion.147 The use of a methylbenzyl alcohol facilitates the separation of H$_2$O$_2$ from the working solution, however, the unit operations needed for this process are similar to AO (oxidation, extraction, distillation units). No plants based on methylbenzyl alcohol oxidation are operating currently, to the best of our knowledge. At the present time, AO remains the dominant method for industrial scale production of H$_2$O$_2$.

2.3 Direct synthesis

The direct synthesis of H$_2$O$_2$ (H$_2$ + O$_2$ → H$_2$O$_2$) is promising for future commercial H$_2$O$_2$ production, because proposed designs for direct synthesis plants do not require the use of toxic organic solvents, require fewer separations, and could be feasible at a smaller scale that enables on-site H$_2$O$_2$ production for a number of applications.20,22,24,37,41,148 No direct synthesis facilities for commercial H$_2$O$_2$ production are operating currently, in large part, because the selective formation of H$_2$O$_2$ by this pathway remains a challenge. Below, we briefly summarize a few critical aspects of proposed direct synthesis processes, as discussed by Salmi et al.37,41,149

![Scheme 2 Alcohol oxidation (Shell) process for the production of H$_2$O$_2$.]
Researchers have used a number of different types of reactor designs for direct synthesis of H$_2$O$_2$ (e.g., batch$^{150-152}$ semi-batch153,154 packed bed,41,148,155,156 microreactors,$^{157-159}$ and membrane reactors$^{160-163}$), and upon review, packed bed reactors (PBRs) seem best suited for industrial direct synthesis facilities due to their ease of operation and scalability.37,41 Salmi et al. determined that PBRs could minimize secondary decomposition of H$_2$O$_2$ (by reaction with H$_2$) when operated with co-current (as opposed to counter-current) downward flow (i.e., trickle bed) of the liquid (aqueous methanol) and gas (mixtures of H$_2$, O$_2$, and a diluent such as N$_2$) streams.41 Figure 3 shows a lab-scale example of the proposed trickle bed reactor for the direct synthesis of H$_2$O$_2$. This system consists of a gas and a liquid inlet, a packed catalyst bed, and a gas–liquid separator at the outlet.37,41 The catalyst bed is immobilized by means of glass wool and metal filters. The liquid flows down through the bed, wets the catalyst particles, turbulently mixes the gas and liquid streams, and provides large gas–liquid interfacial area, which results in facile mass transport and greater H$_2$O$_2$ formation rates.37 The down-flow configuration (Fig. 3) also minimizes gas hold-up, which helps to avoid high pressure drop and H$_2$–O$_2$ mixtures that may fall within the explosive regime.164 Packed and trickle bed reactors would be viable options for industrial direct synthesis, yet, the costing must be considered in more detail in order to get an accurate comparison of the viability of DS to AO.

Highly detailed cost analyses for AO and direct synthesis are not readily available in widely accessible publications, however, Biasi et al. has developed a general cost analysis in 2014.37 A Chemical Engineering Plant Cost Index (CEPCI) analysis showed that the initial capital

![Fig. 3](https://pubs.rsc.org/en/content/articlelanding/2017/catalysis/catal-2017-00132-c#!divAbstract)
investment for a 10 kton year\(^{-1}\) direct synthesis plant would be $4.3 \pm 1.2 \times 10^7$, which is comparable to capital investments for similarly sized AO plants.\(^{37}\) At these scales (10 kton year\(^{-1}\)) the combined operating costs (i.e., utilities, labor, maintenance, and raw materials such as \(\text{H}_2\), \(\text{O}_2\), catalysts, and promoters) for a direct synthesis plant were estimated to be less than those for an AO facility, mainly due to the need for \(\sim 50\%\) fewer operators. A significant portion of the operating costs for both processes are the cost of \(\text{H}_2\) (2.6 MBTU^{-1}),\(^{38,39}\) therefore, achieving high selectivities for the conversion of \(\text{H}_2\) to \(\text{H}_2\text{O}_2\) remains important and is the primary area of research regarding direct synthesis. Biasi et al. did not specify a value for the \(\text{H}_2\text{O}_2\) selectivity above which direct synthesis plants would be competitive with those for AO, but it can be safely assumed that direct synthesis would be more economically attractive if it gave selectivities comparable to that of AO. Despite significant research, selectivities obtained by DS are only comparable under specific laboratory conditions,\(^{165-169}\) and significant improvements are needed before direct synthesis could be practiced at scale. Recent efforts to better understand direct synthesis, enable more flexible operating conditions, and reach high \(\text{H}_2\text{O}_2\) selectivities on stable catalysts are reviewed below.

3 Direct synthesis of \(\text{H}_2\text{O}_2\)

3.1 The history of direct synthesis

The first patent for the direct synthesis of \(\text{H}_2\text{O}_2\)\(^{170}\) was published in 1914 (25 years prior to the first AO patent)\(^{171}\) by German scientists Hugo Henkel and Walter Weber as a replacement for the electrolysis of ammonium sulfate (the primary method for \(\text{H}_2\text{O}_2\) formation at the time).\(^{25}\) Notably, the original patent identifies specific catalysts and suggests process conditions that are still used today (e.g., Pd catalysts\(^{172}\) and aqueous solvents). Despite these initial achievements, the process was never fully implemented at an industrial scale primarily due to safety concerns about the explosive \(\text{H}_2–\text{O}_2\) reactant mixtures\(^{25}\) and low selectivities towards \(\text{H}_2\text{O}_2\) on Pd catalysts (<\(70\%\)).\(^{40,41}\) Few patents for direct synthesis on Pd catalysts have been filed and maintained subsequently, and many of these claim only moderate selectivities (<\(70\%\)) and require the use of potentially hazardous additives such as acids and halides.\(^{173-176}\) As such, the most significant advancements in the industrial production of \(\text{H}_2\text{O}_2\) include the integration of AO with other processes, such as the development of HPPO plants (see Section 2.1).\(^{145,177}\) Such facilities underline the emerging need for cheaper and environmentally benign industrial oxidants in order to both satisfy the needs of a growing population and reduce the environmental impact of those processes. AO is, however, only viable at large scales\(^{25}\) and therefore cannot fully meet the needs of many smaller processes (e.g., pulp and paper bleaching, wastewater treatment) at cost-effective prices. These considerations and the current low price of shale gas, and related cost of \(\text{H}_2\) (2.6 MBTU^{-1})\(^{38,39}\) motivate current interest in improving the selectivity and practicality of the direct synthesis reaction.
The initial discovery that the titanium silicalite zeolite (TS-1)178 catalyzed the selective epoxidation of small alkenes (in addition to alkylation, cracking, isomerization, and polymerization reactions) renewed interest in the use of \(\text{H}_2\text{O}_2 \) for industrial oxidations. Epoxidations with TS-1 catalyst involved co-feeding \(\text{H}_2\text{O}_2 \) with organic reactants such as styrene179 and phenol180 and motivated interest in finding uses for \(\text{H}_2\text{O}_2 \) in other large scale oxidation processes. The merits of such processes were recognized widely when the HPPO process received a Presidential Green Chemistry Challenge Award in 2010.181 Researchers have studied the use of \(\text{H}_2\text{O}_2 \) in other industrially relevant oxidations, especially those practiced at small scales, which would be enabled by on-site \(\text{H}_2\text{O}_2 \) production by direct synthesis. In 2002, Hutchings \textit{et al.} demonstrated that AuPd clusters supported on \(\text{Al}_2\text{O}_3 \) catalyze the direct synthesis of \(\text{H}_2\text{O}_2 \) in mixtures of methanol and supercritical \(\text{CO}_2 \) at \(\text{H}_2\text{O}_2 \) formation rates \((4.5 \text{ (mol H}_2\text{O}_2)(\text{g}_\text{catalyst h})^{-1}) \) higher than on Pd \((0.4 \text{ (mol H}_2\text{O}_2)(\text{g}_\text{catalyst h})^{-1}) \) and Au \((1.5 \text{ (mol H}_2\text{O}_2)(\text{g}_\text{catalyst h})^{-1}) \) clusters.182 This work was followed shortly by a pivotal study showing that the bimetallic AuPd clusters supported on \(\text{Al}_2\text{O}_3 \) gave selectivities \((14\%) \) that were 10-fold greater than monometallic Pd \((1\%) \).151 Subsequent investigations have focused on the effects of the catalyst support,167,168,183–185 the method of reducing and combining precursors for the AuPd clusters, and the presence and identity of various additives168,186,187 and have improved \(\text{H}_2\text{O}_2 \) selectivities significantly from \(14\% \) on AuPd–\(\text{Al}_2\text{O}_3 \)151 to \(98\% \) on AuPd–carbon (Table 2).168 Table 2 shows also that Pd-based bimetallic and intermetallic catalysts such as PdPt188 and PdSn169 give higher \(\text{H}_2\text{O}_2 \) selectivities and rates than pure Pd. Over the past two decades, notable studies have probed the mechanism of \(\text{H}_2\text{O}_2 \) formation,148,172,189–191 developed more productive and selective catalysts,151,168,169 and optimized the design of reactors for direct synthesis.37,155,192

3.2 Experimental considerations for studies of direct synthesis

Despite the apparent simplicity of the reaction network for direct synthesis (Scheme 3), accurate rate measurements for \(\text{H}_2\text{O}_2 \) formation are difficult to acquire at many conditions. One of the primary challenges of this chemistry is that \(\text{H}_2\text{O}_2 \) is an unstable molecule that readily decomposes to form \(\text{H}_2\text{O} \) by secondary pathways in the presence of most metal catalysts.25,151,172,193,194 Among these pathways, secondary decomposition of \(\text{H}_2\text{O}_2 \) by reaction with \(\text{H}_2 \) \((\text{H}_2 + \text{H}_2\text{O}_2 \rightarrow 2\text{H}_2\text{O}) \) is thermodynamically favored over spontaneous decomposition \((2\text{H}_2\text{O}_2 \rightarrow 2\text{H}_2\text{O} + \text{O}_2) \).153,156,167,168 The decomposition of \(\text{H}_2\text{O}_2 \) in the presence of \(\text{H}_2 \), which must be present for direct synthesis, makes it difficult to differentiate between primary and secondary \(\text{H}_2\text{O}_2 \) formation rates and can obscure \(\text{H}_2\text{O}_2 \) formation rates, too. In addition, direct synthesis occurs at the solid–liquid interface within a three phase system \((i.e., \text{gaseous reactants, liquid solvent, and solid catalyst}) \),189 and transport restrictions can easily introduce experimental artifacts from poor liquid–gas mixing and slow intra-particle diffusion that lead to uncertain concentrations of the reactants throughout the system \((i.e., \text{large Thiele moduli and low effectiveness factors}) \). These interactions between phases are especially complicated in continuous flow systems.
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Catalyst<sup>a</sup></th>
<th>Support</th>
<th>Solvent</th>
<th>Additives</th>
<th>H₂O₂ selectivity (%)</th>
<th>H₂O₂ formation rate<sup>c</sup> (mol H₂O₂)(mol metal h)<sup>-1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>168</td>
<td>5% Pd</td>
<td>Carbon</td>
<td>66 wt% CH₃OH<sup>d</sup></td>
<td>—</td>
<td>42</td>
<td>106<sup>e</sup></td>
</tr>
<tr>
<td>168</td>
<td>5% Pd</td>
<td>Carbon treated in 2% HNO₃</td>
<td>66 wt% CH₃OH<sup>d</sup></td>
<td>—</td>
<td>42</td>
<td>110<sup>e</sup></td>
</tr>
<tr>
<td>168</td>
<td>5% Au</td>
<td>Carbon</td>
<td>66 wt% CH₃OH<sup>d</sup></td>
<td>—</td>
<td>—<sup>c</sup></td>
<td>2<sup>f</sup></td>
</tr>
<tr>
<td>168</td>
<td>2.5% Au–2.5% Pd</td>
<td>Carbon</td>
<td>66 wt% CH₃OH<sup>d</sup></td>
<td>—</td>
<td>80</td>
<td>302<sup>e</sup></td>
</tr>
<tr>
<td>168</td>
<td>2.5% Au–2.5% Pd</td>
<td>Carbon treated in 2% HNO₃</td>
<td>66 wt% CH₃OH<sup>d</sup></td>
<td>—</td>
<td>>98</td>
<td>440<sup>e</sup></td>
</tr>
<tr>
<td>168</td>
<td>2.5% Au–2.5% Pd</td>
<td>Carbon treated in 2% CH₃COOH</td>
<td>66 wt% CH₃OH<sup>d</sup></td>
<td>—</td>
<td>>98</td>
<td>481<sup>e</sup></td>
</tr>
<tr>
<td>169</td>
<td>2% Sn–3% Pd</td>
<td>SnO₂/TiO₂</td>
<td>66 wt% CH₃OH<sup>d</sup></td>
<td>—</td>
<td>96</td>
<td>215<sup>e</sup></td>
</tr>
<tr>
<td>197</td>
<td>5% Pd</td>
<td>SiO₂</td>
<td>C₂H₅OH</td>
<td>0.12 M H₂SO₄</td>
<td>0</td>
<td>0<sup>b</sup></td>
</tr>
<tr>
<td>197</td>
<td>5% Pd</td>
<td>SiO₂</td>
<td>C₂H₅OH</td>
<td>0.12 M H₂SO₄</td>
<td>51</td>
<td>257<sup>f,h</sup></td>
</tr>
<tr>
<td>153</td>
<td>5% Pd</td>
<td>Carbon</td>
<td>H₂O</td>
<td>0.05 M H₂SO₄</td>
<td>0</td>
<td>0<sup>b</sup></td>
</tr>
<tr>
<td>153</td>
<td>5% Pd</td>
<td>Carbon</td>
<td>H₂O</td>
<td>0.05 M H₂SO₄</td>
<td>0</td>
<td>0<sup>b</sup></td>
</tr>
<tr>
<td>153</td>
<td>5% Pd</td>
<td>Carbon</td>
<td>H₂O</td>
<td>0.05 M H₂SO₄</td>
<td>26</td>
<td>1<sup>f,h</sup></td>
</tr>
<tr>
<td>153</td>
<td>5% Pd</td>
<td>Carbon</td>
<td>H₂O</td>
<td>0.05 M H₂SO₄</td>
<td>27</td>
<td>0.7<sup>f,h</sup></td>
</tr>
<tr>
<td>153</td>
<td>5% Pd</td>
<td>Carbon</td>
<td>H₂O</td>
<td>0.05 M H₂SO₄</td>
<td>0</td>
<td>0<sup>b</sup></td>
</tr>
<tr>
<td>188</td>
<td>1% Pd</td>
<td>K2621<sup>b</sup></td>
<td>CH₃OH</td>
<td>—</td>
<td>37</td>
<td>904<sup>e</sup></td>
</tr>
<tr>
<td>188</td>
<td>1% Pd–0.1% Pt</td>
<td>K2621<sup>b</sup></td>
<td>CH₃OH</td>
<td>—</td>
<td>43</td>
<td>571<sup>e</sup></td>
</tr>
<tr>
<td>188</td>
<td>1% Pd–0.25% Pt</td>
<td>K2621<sup>b</sup></td>
<td>CH₃OH</td>
<td>—</td>
<td>30</td>
<td>845<sup>e</sup></td>
</tr>
<tr>
<td>188</td>
<td>1% Pd–0.5% Pt</td>
<td>K2621<sup>b</sup></td>
<td>CH₃OH</td>
<td>—</td>
<td>36</td>
<td>1218<sup>e</sup></td>
</tr>
<tr>
<td>188</td>
<td>1% Pd–1% Pt</td>
<td>K2621<sup>b</sup></td>
<td>CH₃OH</td>
<td>—</td>
<td>38</td>
<td>946<sup>e</sup></td>
</tr>
</tbody>
</table>

^a All metal loadings are reported as wt%.
^b Sulfonated polystyrene-divinylbenzene macroreticular ion-exchange resin from Lanxess.
^c Not determined due to low yields.
^d Balance H₂O.
^e Units converted to (mol H₂O₂)(mol metal h)⁻¹ from reported metal loadings and mass of catalyst added.
^f Rates not reported, but estimated from reported H₂ conversion and selectivity with a known amount of catalyst and assuming the pseudo steady-state hypothesis.
^g Experiments were carried out in a semi-batch reactor.
^h Experiments were carried out in a batch reactor.
because a number of complex flow regimes exist and depend on the independent flow rates of both the gas and liquid streams (details of these effects are discussed below). Finally, direct synthesis involves mixtures of H₂ and O₂ reactants, which can form explosive mixtures unless proper safety precautions are followed. Typically, direct synthesis studies are performed in the presence of a diluent (e.g., N₂, CO₂)⁴¹,¹⁶⁸,¹⁹⁵ so that the concentrations of H₂ and O₂ in the reactor lie outside of the flammability limit (<5 vol.% of either H₂ or O₂).¹⁶⁴,¹⁹⁶ Selected studies have been performed using H₂ and O₂ mixtures within the explosive regime,¹⁹⁵,¹⁹⁷–¹⁹⁹ and in these conditions the catalyst should be mixed first with the solvent before being exposed to the H₂–O₂ reactant stream. Even when this procedure is followed, laboratory reactors have exploded,¹⁹⁵ therefore, diluted reactant gases (e.g., O₂–N₂ mixtures) should be used to reduce safety risks during these experiments.

Stirred batch¹⁵⁰–¹⁵² and semi-batch¹⁵³,¹⁵⁴ reactors are commonly employed for screening catalysts and performing kinetic measurements, because they are inexpensive and easily built, minimize inter-particle mass transport restrictions with rapid stirring, and give good thermal control.³⁷ However, the hydrodynamics and operation of these batch-type reactors differ significantly from the packed bed reactors that appear most promising for the implementation of direct synthesis.³⁷ Batch reactors are typically fashioned from glass or made from stainless steel autoclaves and are fed gaseous reactants at constant pressure or controlled flow rates (via mass flow controllers (MFCs)) to control H₂–O₂ ratios (Fig. 4 shows a representative semi-batch reactor used by Lunsford et al.). Concentrations of H₂O₂ are usually determined by titration with a chemical indicator until the solution changes color (e.g., KI–H₂SO₄, KMnO₄–H₂SO₄, Ce(SO₄)₂–ferroin)²⁰⁰ or by performing UV-vis spectroscopy after addition of a given quantity of a spectrophotometric indicator (e.g., CuSO₄–neocuproine).²⁰⁰,²⁰¹ The concentration of the reactant (i.e., H₂, O₂) is typically measured using a gas chromatograph equipped with a thermal conductivity detector, however, the concentration of dissolved H₂ in batch experiments can be analyzed directly with a hydrogen analyzer.¹⁵⁰ The concentrations of both reactants and products change throughout the course of these reactions and long residence times can lead to significant

secondary decomposition of H$_2$O$_2$. Together these changes require that the kinetics of both H$_2$O$_2$ formation and decomposition pathways be analyzed simultaneously. Such calculations are certainly possible, however, this approach leads to greater uncertainties in the final H$_2$O$_2$ formation and decomposition rates than if primary rates were measured in the absence of secondary decomposition of H$_2$O$_2$. The primary advantages of batch-type reactors are their low cost and the related ability to operate many reactors simultaneously, which enables researchers to screen H$_2$O$_2$ rates and selectivities on a number of different combinations of catalysts, solvents, and additives.

Packed bed reactors (PBRs) have also been used to study direct synthesis, and are useful particularly for kinetic studies because they operate at steady state and minimize secondary decomposition of H$_2$O$_2$ at short liquid residence times. Unfortunately, complex flow regimes, due to hydrodynamic interactions between the three phases, can result in mass transport limitations that are more significant than in the well-stirred batch and semi-batch reactors. Mass transport coefficients depend on the gas–liquid flow regime within the reactor and increase with turbulence. Figure 5 shows that the flow regime depends, in turn,
on the Reynolds numbers of both the gas and the liquid phases, which are a function of the flow rate, catalyst particle packing, reactor diameter, and the density and viscosity of the solvent and gas streams.189 Consequently, the type of flow can be difficult to predict, however, it may be observed experimentally (e.g., with a transparent reactor) to allow rough estimates of mass transport coefficients and for the potential for mass transfer limitations.189 Lawal et al. performed an analysis of mass transport on Pd clusters supported on 75–150 μm diameter SiO₂ particles within a 765 μm inner diameter PBR system used for direct synthesis rate measurements.189 The small diameters of the reactor and the catalyst particles and the range of gas and liquid flow rates used (0.035–0.07 m s⁻¹ combined 9.1% H₂ in air and 1 wt% H₂SO₄ and 10 ppm NaBr in H₂O) resulted in Taylor flow, as illustrated in Fig. 6. Under such conditions, H₂ and O₂ readily diffuse through a thin liquid film on the outer surface of catalyst particles and do not present inter-particle (i.e., external) mass transfer limitations, as shown by H₂O₂ formation rates that do not depend on the gas and liquid flow rates.189 Notably, these methods cannot probe

Fig. 5 Flow regime in a downward-flow packed bed reactor as a function of liquid (Reₗ) and gas (Reₕ) Reynolds's numbers. Reproduced from J. García-Serna, T. Moreno, P. Biasi, M. J. Cocero, J.-P. Mikkola and T. O. Salmi, Green Chem., 2014, 16, 2320; with permission from the Royal Society of Chemistry.

Fig. 6 Three different mass transport steps relevant to Taylor flow; (1) H₂ diffusion from the gas phase through a thin layer of liquid and then into the catalyst (G/L/S), (2) dissolved H₂ diffusing from the liquid into the catalyst (L/S), and (3) H₂ dissolving from the gas phase into the liquid (G/L). Reproduced from Y. Voloshin, R. Halder and A. Lawal, Kinetics of hydrogen peroxide synthesis by direct combination of H₂ and O₂ in a microreactor, Catal. Today, 125, 40. Copyright 2007 with permissions from Elsevier.
for intra-particle mass transfer limitations, which are best assessed via the Madon–Boudart criteria, as discussed later. Despite the complications presented by the flow regime, PBRs are effective for studying direct synthesis, because they can achieve steady-state and minimize the extent of H2O2 hydrogenation.

Less traditional reactors used to study direct synthesis include microfluidic devices and membrane reactors. Microfluidic reactors are much smaller versions of PBRs with diameters less than 400 μm and are often fabricated from glass. The small diameters of these reactors are less than that of the flame quenching distance for H2 (640 μm), which helps to prevent H2 combustion and allows direct synthesis to be studied with flammable reactant mixtures (>5 vol.% H2). Additionally, the high surface to volume ratios of these reactors dissipate heat well, which provides excellent temperature control. However, microfluidic reactors suffer from high pressure drop and poor mixing from primarily laminar flow, both of which introduce mass-transfer artifacts during kinetic measurements. Membrane reactors are made by the electroless deposition of catalytic material (e.g., Pd) onto a porous tubular support such as α-alumina. During the reaction, gaseous H2 flowing across the exterior of the tubular membrane diffuses through the porous membrane to react with O2 dissolved in a solvent flowing inside the tubular membrane. Consequently, H2 and O2 only contact at very low concentrations, which eliminates the potential for explosions. Like microfluidic devices, membrane reactors are useful for performing direct synthesis within the flammable region although the obvious mass transport limitations make them poorly suited for fundamental studies.

Regardless of the type of reactor used, intra-pellet mass transport restrictions (i.e., small Thiele modulus, or an effectiveness factor of one) must be avoided to acquire mechanistically interpretable rate measurements. The Madon–Boudart criteria (e.g., turnover rates must not depend on catalyst loading or the diameter of the support particle for a given metal dispersion or cluster size) should be satisfied to demonstrate directly the lack of diffusional restrictions within catalyst particles. If this condition is satisfied, and if inter-pellet concentration gradients are negligible, then reliable rate measurements may be collected in several of the reactors discussed. Clearly, each reactor has its own advantages and disadvantages, therefore, it is important for the researcher to assess which reactor would be the most applicable for each study on a case by case basis.

3.3 Mechanistic investigations of H2O2 and H2O formation

The detailed mechanisms by which H2O2 (H2 + O2 → H2O2) and H2O (2H2 + O2 → 2H2O) form during direct synthesis are yet to be resolved and are the subject of numerous studies over the past two decades. In addition, the mechanism and intermediates for the decomposition (2H2O2 → 2H2O + O2) and hydrogenation (H2O2 + H2 → 2H2O) of H2O2 on transition metal catalysts has received significant attention.

Historically, the most commonly suggested mechanisms for H2O2 and primary H2O formation during direct synthesis involve Langmuir–Hinshelwood type elementary steps between chemically adsorbed surface
intermediates,149,153,167,189,193,194,205–207 such as that depicted in Scheme 4. Here, H\textsubscript{2} dissociatively chemisorbs forming H* (where * denotes a chemisorbed surface species) while O\textsubscript{2} chemisorbs molecularly. Chemisorbed molecular oxygen (O\textsubscript{2}*) reacts with an adjacent H* forming hydroperoxy (OOH*) and then with a second H* forming the H\textsubscript{2}O\textsubscript{2}*, which desorbs. Lunsford \textit{et al.} demonstrated that O–O bond rupture occurs irreversibly during direct synthesis of H\textsubscript{2}O\textsubscript{2} and inevitably leads to the formation of H\textsubscript{2}O.172 These conclusions were reached by performing direct synthesis using mixtures of 16O\textsubscript{2} and 18O\textsubscript{2} along with H\textsubscript{2}. Figure 7 shows Raman spectra of the product mixture, which contains H\textsubscript{2}16O\textsubscript{2} and H\textsubscript{2}18O\textsubscript{2} but no detectable quantities of H\textsubscript{2}16O\textsubscript{18}O. These results demonstrate O–O bond scission in O\textsubscript{2}* , OOH*, and H\textsubscript{2}O\textsubscript{2}* must produce O* and OH* intermediates, which can only undergo subsequent hydrogenation and form H\textsubscript{2}O*.

\begin{align*}
H\textsubscript{2} + 2* & \rightleftharpoons 2H* \\
O\textsubscript{2} + * & \rightleftharpoons O\textsubscript{2}* \\
O\textsubscript{2}* + H* & \rightleftharpoons OOH* + * \\
OOH* + H* & \rightleftharpoons H\textsubscript{2}O\textsubscript{2}* + * \\
H\textsubscript{2}O\textsubscript{2}* & \rightleftharpoons H\textsubscript{2}O\textsubscript{2} + * \\
O\textsubscript{2}* + * & \rightleftharpoons 2O* \\
OOH* + * & \rightleftharpoons OH* + O* \\
O* + H* & \rightleftharpoons OH* + * \\
OH* + H* & \rightleftharpoons H\textsubscript{2}O* + * \\
H\textsubscript{2}O* & \rightleftharpoons H\textsubscript{2}O + * \\
H\textsubscript{2}O\textsubscript{2}* + * & \rightleftharpoons 2OH* \\
\end{align*}

Several groups have proposed that direct synthesis occurs by Langmuir–Hinshelwood mechanisms, similar to those steps shown in Scheme 4, and have supported this claim by mathematical comparisons between measured rates and microkinetic models. Lawal et al. published a series of studies that probed the mechanism for direct synthesis on supported Pd catalysts by comparisons of rates measured in a PBR to proposed rate expressions.\(^{156,189,208}\) In the first study, the dependence of \(\text{H}_2\text{O}_2\) formation rates were measured as a function of the partial pressure of \(\text{O}_2\) (82–414 kPa) and \(\text{H}_2\) (28–207 kPa) and compared to rate expressions derived from four previously proposed sets of assumptions concerning the kinetic relevance of individual elementary steps.\(^{189}\) Eremin et al. proposed three potential kinetically relevant steps for \(\text{H}_2\text{O}_2\) formation (\(\text{H}^* + \text{OOH}^* \rightarrow \text{H}_2\text{O}_2 + 2^*\), \(\text{O}_2^* + \text{H}^*\text{H} \rightarrow \text{H}_2\text{O}_2^* + \cdot\), and \(\text{O}_2^{**} + \text{H}^*\text{H} \rightarrow \text{H}_2\text{O}_2^{**} + \cdot\))\(^{209}\) and Zhou and Lee proposed a similar step (\(\text{O}_2^* + \text{H}_2^* \rightarrow \text{H}_2\text{O}_2^{**}\)).\(^{205}\) Measured \(\text{H}_2\text{O}_2\) formation rates were reported to have a sub-linear dependence on both the \(\text{O}_2\) and the \(\text{H}_2\) pressures, however, the precise power law dependencies were not reported. The rate law proposed by Zhou and Lee (i.e., kinetically relevant direct reaction of molecular \(\text{H}_2\) with \(\text{O}_2\))\(^{205}\) best described the rate dependence data collected by Lawal et al.,\(^{189}\) which is surprising considering the propensity for Pd to readily dissociate \(\text{H}_2\).\(^{120}\) Gemo and coworkers also measured rates for \(\text{H}_2\text{O}_2\) formation in batch, semi-batch, and continuous flow reactors in order to determine the mechanism of formation.\(^{149}\) This study combined simple rate expressions derived from Langmuir–Hinshelwood kinetics for primary (\(\text{H}_2\text{O}_2\) and \(\text{H}_2\text{O}\) formation) and secondary (\(\text{H}_2\text{O}_2\) decomposition and hydrogenation) rates with mass balances for the gas and liquid phase in each type of reactor to generate a series of differential and algebraic equations for comparison to

Fig. 7 Raman spectra of products from the direct synthesis of \(\text{H}_2\text{O}_2\) in (a) the presence of \(^{16}\text{O}_2\) and \(^{18}\text{O}_2\) and (b) in the presence of \(^{16}\text{O}_2\) only. Shifts at 879 and 830 cm\(^{-1}\) correspond to \(\text{H}_2^{18}\text{O}_2\) and \(\text{H}_2^{16}\text{O}_2\) respectively. Reproduced from D. P. Dissanayake and J. H. Lunsford, The direct formation of \(\text{H}_2\text{O}_2\) from \(\text{H}_2\) and \(\text{O}_2\) over colloidal palladium, J. Catal., 214, 113. Copyright 2003 with permissions from Elsevier.
the experimental results. Table 3 shows rate constants and activation energies derived from fits to kinetic data, which suggest that the flow reactor gave the lowest activation energies for all primary and secondary reactions by a significant margin (4–17 fold). These differences were attributed to differences between the average oxidation state of Pd in each of the reactors, specifically that the continuous flow reactor contained the smallest fraction of Pd$^{2+}$ on the surface of Pd clusters because the concentration of H$_2$O$_2$ and the contact time were much less than in the batch-type reactors. This hypothesis may be consistent with earlier studies that have demonstrated that Pd$^{2+}$ gives lower H$_2$O$_2$ formation rates by direct synthesis than those on Pd0. The differences in apparent activation energies may also reflect a significant change in the identity of the predominant surface intermediates. Whether or not the different ratios of Pd$^{2+}$ to Pd0 on the surface of clusters are responsible for the differences between apparent activation energies measured in different reactors, it is clear that the choice of experimental setup and reaction conditions impact the results of kinetic and mechanistic studies of direct synthesis, even among careful measurements within a single group. Consequently, such differences may be responsible, in part, for the seemingly disparate results reported by different groups studying direct synthesis of H$_2$O$_2$.

Computational chemistry (e.g., density functional theory (DFT)) has been used to calculate reaction and activation energies for sets of Langmuirian elementary steps that are commonly invoked to describe H$_2$O$_2$, as well as secondary decomposition of H$_2$O$_2$, on metal surfaces. Notably, these theoretical investigations typically study periodic slabs at low coverages in contact with a vacuum, which differs from the liquid environment in which direct synthesis occurs. Mavrikakis et al. have predicted the geometry of the transition states and intrinsic activation energies for elementary steps for H$_2$O$_2$ formation and H$_2$O$_2$ decomposition and hydrogenation on the (111) facets of Pt, Pd, Cu, Ag, and Au. The binding energy of atomic oxygen (BE$_O$) is an important parameter in direct synthesis, because BE$_O$ correlates to O–O bond dissociation activity of each surface, as such, the values of BE$_O$ were compared with the calculated intrinsic activation energies, which showed that potential catalysts for direct synthesis can be grouped in three distinct classes. These three classes consist of metals that bind O*
strongly \((\text{BE}_\text{O} < -4 \text{ eV})\) and consequently dissociate O–O but kinetically hinder O* hydrogenation (e.g., Cu), metals that weakly bind O* \((\text{BE}_\text{O} > -3.5 \text{ eV})\) and therefore do not dissociate O–O and favor H₂O₂ formation (e.g., Au, Ag), or metals with an intermediate \(\text{BE}_\text{O} \) \((-4 < \text{BE}_\text{O} < -3.5 \text{ eV})\) that readily dissociate O–O and favor complete reduction of O* to H₂O (e.g., Pd, Pt). It is important to note that while Au and Ag have higher energy barriers for O–O dissociation than the other metals, their low \(\text{BE}_\text{O}\) values would suggest low availability of O₂ on the surface and therefore the rates of both H₂O₂ and H₂O formation are quite slow. As such, Pd remains the catalyst of choice for direct synthesis research, because Pd has higher barriers for O–O bond scission than Cu and \(\text{BE}_\text{O}\) values that allow for reasonable rates of H₂O₂ formation.

Modification of the Pd by alloying with Au is also an effective strategy for increasing H₂O₂ selectivity. Lim et al. predicted that monomers of Pd within a 4×4 Au atomic slab with 15 Au atoms and one Pd atom, give barriers for O–O bond scission within O₂*, OOH*, and H₂O₂* that are 1.04, 0.5, and 0.3 eV, respectively, greater than those on Pd(111). Todorovic and Meyer examined the effects of alloying metals on the activation energies for a mechanism involving hydrogenation of O₂* and OOH* by H* to form H₂O₂ in tandem with dissociation of O–O bonds and subsequent hydrogenation of O* and OH* by H* to form H₂O. They found that the kinetically relevant steps that formed H₂O were O₂* dissociation on Pd(111), OOH* dissociation into O* and OH* on Pt(111), and H₂O₂* dissociation into 2OH* on a AuPd(221) surface with a stoichiometry of Au₉Pd₁. Other investigators found also that dissociation of the O–O bond in H₂O₂* occurred more readily than that of O₂* and OOH* on 12-atom Au clusters and on Pd monomers in a 4×4 Au atomic slab with 15 Au atoms and one Pd atom. The investigation by Todorovic and Meyer also addressed direct synthesis on a 0.4 ML H-covered Pd hydride (PdH(211)) surface, which may form at the H₂ and O₂ pressures and temperatures used for direct synthesis. Activation energies for O₂* dissociation are greater on the PdH(211) (0.77 eV) than on the Pd(111) (0.59 eV), while the activation energies for the dissociation of OOH* to O* and OH* and for the hydrogenation of OOH* to H₂O₂* are both lower on PdH(211) (0.12 and 0.73 eV) than on Pd(111) (0.35 and 1.13 eV). Thus, the decrease in activation energies for steps that lead to H₂O₂ formation and the concomitant increase in barriers for steps preceding H₂O formation suggest that Pd hydrides may be more selective for direct synthesis of H₂O₂ than Pd. In general, DFT studies largely agree that the binding energy of O* is an important factor for determining activity towards direct synthesis and that catalysts that preferentially cleave O–O bonds within H₂O₂* over O₂* and OOH* are more selective. These studies suggest that greater H₂O₂ selectivities may be achieved on modified surfaces (e.g., bimetallics), which primarily form H₂O through H₂O₂ dissociation (as discussed below in Section 3.4). While DFT studies provide invaluable guidance that helps researchers to understand direct synthesis at the catalyst surface, experimental studies of technical catalysts remain critical for revealing the predominant mechanism for H₂O₂ and H₂O formation during direct synthesis.
Langmuir–Hinshelwood mechanisms involving homolytic dissociation of H₂ are the most commonly proposed mechanisms by far, however, alternative mechanisms have been proposed. The alternative to the homolytic surface reactions described above involve elementary steps between highly charged intermediates in both the solvent and at the catalyst surface, namely proton–electron transfer processes. Lunsford et al. showed that Pd catalysts can form trace amounts of H₂O₂ corresponding to an average of 0.5 turnovers per Pd (i.e., 2.7 × 10⁻⁵ mol H₂O₂ with 4.7 × 10⁻⁵ mol Pd) in a batch reactor containing an acidic aqueous solution (0.1 M HCl) saturated with O₂ at atmospheric pressure.¹⁵⁴ Lunsford proposed that Cl⁻ from HCl and dissolved O₂ combine to form Cl₂PdO₂ complexes, which react with H⁺ and Cl⁻ in solution to form PdCl₄⁻² and H₂O₂, inspired by the work by Stahl et al. on the oxygenation of nitrogen-coordinated Pd⁰.²¹⁷ Subsequently, PdCl₄⁻² could be reduced to Pd⁰ and HCl by reaction with dissolved H₂ (Scheme 5).¹⁵⁴ Notably, this mechanism involves homogenous intermediates that form from supported Pd clusters, which would then leach from continuous flow reactors at high rates. Moreover, this mechanism would not explain H₂O₂ formation in the absence of acids or strongly coordinating anionic species, such as Cl₅⁻. In their 2005 patent, Zhou and Lee²⁰⁵ suggested that H₂O₂ formed by a Langmuir–Hinshelwood mechanism involving electron transfer from H₂ to O₂ prior to the reaction between H₂²⁺ and O₂⁻² surface species, however, the patent did not contain data that supports this mechanism. Centi et al. proposed that H₂O₂ forms by protonation of O₂* to OOH* by protons (H⁺) in solution, followed by reaction between OOH*⁺ and non-chemisorbed H₂ to form H₂O₂* and a H⁺.¹⁶¹ The authors claimed that the mechanism was supported by the observation that Pd membrane catalysts that had been soaked in concentrated H₂O₂ longer (i.e., higher O₂* coverage) had a higher propensity

to form H₂O₂, although this pretreatment procedure may also have affected the oxidation state of the Pd clusters. Our group has performed a mechanistic study for direct synthesis on SiO₂-supported Pd clusters by measuring formation rates of H₂O₂ and H₂O (in the absence of secondary decomposition) over a wide range of H₂ (5–400 kPa) and O₂ (25–400 kPa) pressures.¹⁴⁸ Rate data were inconsistent with previously proposed Langmuirian mechanisms but instead fit an Eley–Rideal mechanism involving proton–electron transfer to O₂** and OOH** (where ** denotes adjacent surface sites) following heterolytic dissociation of H* (to H⁺ and e⁻), as shown in Scheme 6. The importance of proton–electron transfer pathways was further supported by experiments showing that H₂O₂ formation rates are undetectable in aprotic solvents. This mechanism involving proton–electron transfer is similar to the two electron oxygen reduction reaction (ORR),¹²¹,²¹⁹ however, this chemistry occurs in the absence of an applied voltage. Instead, H₂ provides a chemical potential needed to drive the reaction, depicted in Scheme 7. This finding provides a useful link between the direct synthesis of H₂O₂ to the well-studied field of ORR chemistry and catalyst design.

Scheme 6
In practice, H_2O_2 yields depend not only on the primary rates of H_2O_2 and H_2O formation but reflect also loss of H_2O_2 by secondary decomposition ($2\text{H}_2\text{O}_2 \rightarrow 2\text{H}_2\text{O} + \text{O}_2$) and hydrogenation ($\text{H}_2\text{O}_2 + \text{H}_2 \rightarrow 2\text{H}_2\text{O}$) reactions on the surface of the catalyst. Dumesic et al. directly compared hydrogenation and decomposition rates on SiO_2 supported Pd and AuPd clusters in a batch reactor. Rates of hydrogenation on Pd ($0.61 (\text{mol H}_2\text{O}_2)(\text{mol Pd s})^{-1}$ where Pd denotes surface Pd atoms) and AuPd ($2.35 (\text{mol H}_2\text{O}_2)(\text{mol Pd s})^{-1}$) clusters were much higher than rates for decomposition (0.029 and $0.067 (\text{mol H}_2\text{O}_2)(\text{mol Pd s})^{-1}$, respectively). Surprisingly, AuPd decomposed H_2O_2 more quickly than Pd by both pathways, thereby resulting in a lower selectivity than Pd. It was suggested that the AuPd clusters used in this study had poor H_2O_2 selectivities because groups of contiguous Pd atoms existed on the surface even at 0.69 ML Au, however, it is not discussed why the hydrogenation and decomposition rates were higher on AuPd than on Pd. Choudhary et al. also found that rates of H_2O_2 hydrogenation (42 h^{-1}) were much higher than those for H_2O_2 decomposition (0.5 h^{-1}) on Al_2O_3 supported Pd in a batch reactor in aqueous solution of 0.3 M H_3PO_4. Unlike the findings of Dumesic et al., modification of the surface of the Pd catalyst led to a decrease in hydrogenation rates (8 fold). Mavrikakis et al. recently reported a thorough investigation of the mechanisms by which H_2O_2 decomposes on Pd that combined experimental and DFT results. "Catalysis, 2017, 29, 122–212 "View Online
over hydrogenation by H* in the presence of H₂O₂, but rates of hydrogenation might be higher than those for H-transfer when H₂ is present and creates an abundance of H*. Lawal et al. studied the hydrogenation of H₂O₂ and found that increasing H₂ partial pressure increased the rate of H₂O₂ hydrogenation between 28 and 140 kPa, above which hydrogenation rates no longer depended on H₂ pressure. Increasing the concentration of H₂O₂ also increased the hydrogenation rate but there was a maxima at ~0.6 M H₂O₂ followed by a slight decrease in hydrogenation rate with further increases in H₂O₂ concentration. Comparisons between the quality of fit between rate expressions derived from several proposed mechanisms and the kinetic data suggested that O–O bonds primarily ruptured by unimolecular dissociation of H₂O₂ (i.e., H₂O₂* + →2OH*) rather than direct hydrogenation of H₂O₂* by H* (i.e., H₂O₂* + 2H* →H₂O* + *). However, the difference in the quality of fit between these two models do not appear to be statistically significant (e.g., reported R² values of 0.9360 and 0.9362 respectively), such that it seems difficult to state definitively whether one pathway for O–O rupture dominates. Work by Hutchings et al. found that the hydrogenation of H₂O₂ in a batch reactor can be suppressed

Table 4 Proposed list of elementary steps for H₂O₂ decomposition and their calculated energy barriers (Eₐ) and forward reaction energies (ΔE) on Pd(111) and Pd(100) surfaces:²⁹⁻⁻⁻enate
significantly on carbon supported AuPd by pretreating the support with acid (e.g., HNO₃, CH₃COOH) or by using a specific oxidation/reduction pretreatment on TiO₂ supported PdSn. Both of these findings are discussed in more detail below (Section 3.4).

Despite the significant research into the mechanisms responsible for the formation and decomposition reactions that occur during direct synthesis, it is clear that there is no consensus on the mechanism. Individual reports of kinetic measurements acquired in batch and packed bed reactors provide evidence for both Langmuir–Hinshelwood and Eley–Rideal mechanisms and for homolytic and heterolytic dissociation of H₂. Computational studies agree that the binding energy of atomic oxygen is an important factor for gauging the catalytic activity of direct synthesis. Both experimental and computational studies found that rates of H₂O₂ hydrogenation were more significant than those for H₂O₂ decomposition. Future work should emphasize collecting additional evidence for the mechanisms of H₂O₂ formation using computational or experimental methods. Computational studies will need to consider the presence of the solvent, which is ubiquitous during H₂O₂ formation, and which may participate directly (as a source of H⁺) and indirectly (via solvation, hydrogen-bonding interactions, H⁺ shuttling, etc.). Experimental investigations must take the appropriate precautions to ensure that mass transport restrictions do not introduce artifacts to rate measurements, the hydrodynamics of the reactors used are well-understood, and that secondary decomposition of H₂O₂ is either suppressed or accounted for correctly.

3.4 Strategies for improving H₂O₂ selectivity during direct synthesis

3.4.1 Use of acidic solvents and halide modifiers. The success of direct synthesis as a viable alternative to AO relies on achieving high H₂O₂ selectivities, and consequently, a number of different catalyst design (e.g., addition of halides, alloying metals, modified supports) and reaction engineering (e.g., addition of acids to solution, changing solvent identity) approaches have been investigated for their potential to improve H₂O₂ selectivities. One of the earliest and most effective strategies for increasing H₂O₂ selectivity during direct synthesis is the addition of mineral acids (e.g., HCl, HBr, H₂SO₄, H₃PO₄, HNO₃, H₂CO₃ from dissolved CO₂) to the reaction solution. However, the mechanism by which adding acids or halides to the reaction medium increases selectivity is currently unclear. Work by Liu and Lunsford has shown that increasing the concentration of H₂SO₄ (in the presence of HCl) in ethanol increases overall rates of H₂O₂ formation by up to 2-fold on SiO₂ supported Pd clusters. The addition of NaCl (i.e., as a source of Cl⁻), however, had shown no selectivity towards H₂O₂, which suggests that mainly the changes in the acidity of the solution increases H₂O₂ formation rates and that the presence of SO₄²⁻ or Cl⁻ anions is less significant. The same group also found that 0.12 M H₂SO₄ solutions give somewhat higher H₂O₂ selectivities (40%) and H₂O₂ yields (1.5 wt% H₂O₂ in 5 hours) than 0.17 M HCl (35% selectivity, 1.2 wt% H₂O₂) on the same Pd catalyst. Unfortunately, the reasons for
these differences are difficult to understand as pH values were not reported and the concentrations of the acids were different. Thus, it is unclear if the differences in rates and selectivity result from different concentrations of H$^+$ in solution or the difference in the identity of the counterion. Recently, our group examined the effects of proton concentration on H$_2$O$_2$ and H$_2$O formation and found a slight increase in H$_2$O$_2$ formation rates (10 fold) over a very wide range of proton concentration (107 fold).148 This trend was consistent for four different acids (HCl, H$_2$SO$_4$, H$_3$PO$_4$, H$_2$CO$_3$), and the rates and selectivities for H$_2$O$_2$ formation did not depend on the identity of the acid at a given pH value. The slight increase in H$_2$O$_2$ formation rate was attributed to modification of the ionic strength of the solution surrounding the catalyst surface, which can help to stabilize highly charged transition states as described by Debye–Hückel theory. While acidic solutions clearly help to increase rates and selectivities for H$_2$O$_2$ formation,189,224,225 the reasons for these differences remain speculative.

In addition to acids, the presence of halide-containing compounds (e.g., NaBr,222,226 KBr,153 KCl153) in solution have been found to improve H$_2$O$_2$ selectivity.153 Halides may increase H$_2$O$_2$ selectivities by adsorbing strongly and blocking sites that readily dissociate O–O bonds, as suggested in studies of Cl and Br on PtPd/SiO$_2$,40 Cl and Br on Pd/SiO$_2$,195,198 and Br on AuPd/C and AuPd/MgO.222 Alternatively, the halides may also affect the electronic structure of the catalyst surface, shifting electrons lower in energy than the Fermi level, decreasing the extent of electron back donation to 2p* orbitals of O$_2^*$ (and OOH* and H$_2$O$_2^*$), and thus making O–O bond dissociation more difficult.$^{153,227–231}$ Notably, halides and acids may work cooperatively. Specifically, acidic solutions can lower the solution pH beneath the isoelectric point of the catalyst surface (i.e., protonate the surface) such that negatively charged halides adsorb and influence surface chemistry.232 While the exact mechanism by which the presence of acids and halides in solution improve H$_2$O$_2$ selectivity is not clear, it is generally accepted that they do so via a direct interaction with the catalyst surface. Choudary and Samanta found that the post-synthetic addition of Br$^-$/Co to a Al$_2$O$_3$ supported 5 wt% Pd catalyst resulted in high H$_2$O$_2$ selectivity (increase from 1 to 61%) in a semi-batch reactor.153,233 This improvement was attributed to charge transfer from the halides to O$_2^*$, which could facilitate the reaction of O$_2^*$ with H$^+$ in solution. The involvement of H$^+$ in the proposed mechanism is supported by experiments, which showed that the addition of Br$^-$ in the absence of acid (i.e., a low concentration of H$^+$ in solution) did not improve catalyst performance.153,195,232 In contrast to Br$^-$, I$^-$ significantly decreased H$_2$ conversion (perhaps due to the strong coordinating ability of I with Pd which indiscriminately blocks all active sites) while F$^-$ resulted in a decrease in H$_2$O$_2$ selectivity which was attributed to the high electronegativity of F, which makes it more difficult to transfer e$^-$ to O$_2^*$. Overall, the addition of halides and acids to the reaction mixture is an undesirable solution to the selectivity problem because direct synthesis plants would need to purify the H$_2$O$_2$ formed and dispose of acidic waste in practice. Therefore, other surface modification strategies may be able
to alter the surface chemistry in a similar way, but without the use of harmful solutions.

3.4.2 Effects of metal cluster size. The caustic nature of acid and halide additives and the detrimental effects on the stability of direct synthesis catalysts has motivated research to find non-hazardous means of increasing \(\text{H}_2\text{O}_2 \) selectivity during direct synthesis. One simple approach has been to investigate the effects of cluster size on \(\text{H}_2\text{O}_2 \) selectivity. Several studies found that increasing the average particle diameter of Pd clusters over a range of 0.7–7 nm,\(^{148}\) 4–5 nm,\(^{234}\) and 3.4–4.2 nm\(^{235}\) lead to a 4, 1.5, and 1.3 fold increases in \(\text{H}_2\text{O}_2 \) selectivity, respectively. Increasing cluster size is known to alter the electronic landscape of the catalyst surface by decreasing the ratio of under-coordinated (corners and edges) to coordinated (terraces) surface atoms.\(^{236}\) Under-coordinated surface atoms have decreased d-orbital overlap, resulting in an increase in the density of states at energies near the Fermi level and higher than the lowest unoccupied molecular orbitals (LUMO) of \(\text{O}_2 \).\(^{228}\) Therefore, Pd surfaces with more under-coordinated surface atoms (i.e., small clusters) will have a greater extent of electron back donation into the \(\pi^* \) orbital of \(\text{O}_2^* \), increasing rates of O–O bond dissociation. These findings are in agreement with measurements of the activation enthalpy for \(\text{H}_2\text{O} \) formation, which showed an increase of 14 kJ mol\(^{-1}\) when the Pd cluster size was increased from 0.7 to 7 nm.\(^{148}\) However, increasing the size of Pd clusters alone does not achieve sufficiently high \(\text{H}_2\text{O}_2 \) selectivities and is doubly ineffective because a significant portion of the (expensive) Pd cannot interact with the reagents. Thus, despite the benefits of increasing cluster size, an alternative means for changing the electronic structure of Pd surfaces has been pursued through alloying with various metals.

3.4.3 Alloys and bimetallic catalysts. Alloying Au with Pd can significantly increase both \(\text{H}_2\text{O}_2 \) selectivities and formation rates in comparison with monometallic Pd.\(^{19,54,63,81,194}\) One of the most well-known examples of this phenomenon are the high \(\text{H}_2\text{O}_2 \) selectivities on AuPd bimetallic clusters supported on \(\text{Al}_2\text{O}_3 \) reported by Hutchings and coworkers.\(^{151}\) In their initial study, a 1:1 Pd to Au catalyst had markedly improved rates \((4.5 \times 10^6 \text{ (mol \text{H}_2\text{O}_2)} / (\text{kg catalyst h})^{-1}) \) and selectivities \((14\%) \) over monometallic Pd \((3.7 \times 10^7 \text{ (mol \text{H}_2\text{O}_2)}) / (\text{kg catalyst h})^{-1} \) and \(1\% \), respectively). These results have since inspired multiple studies on AuPd,\(^{165–167}\) which have achieved reasonably high \(\text{H}_2\text{O}_2 \) selectivities (40–80\%). These studies span a range of supports (e.g., \(\text{Al}_2\text{O}_3 \), \(\text{TiO}_2 \), C, CeS, ZS) and solvents (e.g., water, ethanol, methanol), yet \(\text{H}_2\text{O}_2 \) selectivity increases upon the addition of Au to Pd in all cases. The mechanistic or energetic reasons for these improvements are still the subject of active research.

DFT work by Lim compared activation energies for O–O bond scission in \(\text{O}_2^* \), \(\text{OOH}^* \), and \(\text{H}_2\text{O}_2^* \) between Pd monomers, dimers, and trimers on a AuPd surface with those on Pd(111) and found that barriers for O–O bond rupture uniformly decrease with the increasing number of Pd–Pd
nearest neighbors.213,216 These findings were explained as the result of Pd having a greater propensity to back donate electrons to π^* orbitals of O$_2^*$ in comparison to Au. Thus, these results suggest that the highest H$_2$O$_2$ selectivities will be given by AuPd surfaces that contain primarily Pd monomers rather than ensembles of two or more Pd atoms. Figure 8 shows that the calculated density of states of Pd monomers in the Au surface are broader and shifted lower in energy relative to the Fermi level than on Pd atoms within the pure Pd(111) surface clusters.213,216 The broadening of the density of states suggests that Au not only rehybridizes orbitals within the surface but also withdraws electrons from Pd atoms, which can further reduce electron back donation. There is a significant amount of experimental evidence from X-ray photoelectron spectroscopy (XPS) measurements showing that there is a decrease in the binding energy of the Pd 3d (0.4–1.4 eV) and Au 4f (0.3–1.4 eV) orbitals relative to bulk Pd and Au respectively.237–242 Many of these reports state that these changes in binding energy result from charge transfer from the Pd to adjacent Au, reducing the electron density on Pd.237,240–242 Collectively, these computational and experimental findings suggest that the greater H$_2$O$_2$ selectivities on AuPd result from electronic changes. There is, however, evidence that indicates that the improved H$_2$O$_2$ selectivities on AuPd simply occur due to differences in the number of sites that form H$_2$O over those that form H$_2$O (i.e., changes result from ensemble effects). Jirkovský \textit{et al.} suggested that Pd monomers in Au cannot easily dissociate O–O bonds but readily form H$_2$O based on comparisons of H$_2$O$_2$ and H$_2$O selectivities among AuPd clusters during electrocatalytic
ORR conducted with a rotating ring-disc electrode.32 Figure 9 shows that the H$_2$O$_2$ selectivities increase initially with Pd content and reach a maximum at 10\% Pd, where Pd dimers are thought to begin to form on the clusters used in the study. DFT calculated energy barriers show that Pd monomers have higher activation energy barriers for H$_2$O formation than dimers and Pd surfaces,32 which agrees with the calculations reported by Lim and coworkers.213,216 The combined evidence for ensemble and electronic effects indicates that the improved H$_2$O$_2$ selectivities after alloying Pd with Au likely arise from a combination of these two effects, which are intrinsically linked. Regardless of the specific manner by which AuPd promotes H$_2$O$_2$ formation over O–O bond rupture, isolated surface Pd atoms are preferred over contiguous Pd ensembles for direct synthesis catalysts. Consequently, other Pd-based bimetallic and intermetallic compounds may also show greater H$_2$O$_2$ selectivities than Pd.

The success of alloying Au and Pd has inspired investigations into alternative alloys in order to find other selective catalysts. For example, Lunsford et al.,15 examined SiO$_2$ supported PtPd alloy clusters in a semibatch reactor in ethanol acidified with H$_2$SO$_4$ and found that nonmetallic Pd (~70\%) had significantly higher H$_2$O$_2$ selectivity than Pt (~10\%). However, the addition of an extremely small amount of Pt to Pd (1\% Pt, 99\% Pd) resulted in a two fold increase in H$_2$O$_2$ formation rate with no loss in selectivity (60–70\%).40 The increase in H$_2$O$_2$ formation rate was attributed to electronic modification of the Pd by the Pt (and not a direct interaction between Pt and adsorbates), because Pt would most likely be located within the bulk of the cluster due to its preference to alloy with Pd.40,243 Zecca et al. reported that PtPd (5\% Pt, 95\% Pd) clusters

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure9.png}
\caption{H$_2$O$_2$ selectivity as a function of the molar fraction of Pd in AuPd catalysts (x), at potentials of 0, –0.1, and –0.2 V. The dashed lines are intended to guide the eye. Reproduced with permissions from J. S. Jirkovsky, I. Panas, E. Ahlberg, M. Halasa, S. Romani and D. J. Schiffrin, Switching on the Electrocatalytic Ethene Epoxidation on Nanocrystalline RuO$_2$, J. Am. Chem. Soc., 2011, 133, 19432. Copyright 2011 American Chemical Society.}
\end{figure}
gave a greater H_2O_2 selectivity (43%) than did monometallic Pd clusters (37%) when both were supported on Lewatit K2621 resin and studied in a batch reactor, however, the H_2O_2 formation rate decreased almost two fold upon addition of Pt. The difference between the report of Zecca et al. and that of Lunsford et al. could be attributed to differences in the systems used (Lunsford et al. used a semi-batch reactor at atmospheric pressure and Zecca et al. implemented a batch reactor at pressures exceeding 2.4 MPa), yet in both cases there was an improvement in the overall performance of the catalyst through the addition of small amounts of Pt to the Pd. Recent studies of bimetallic ORR catalysts have revealed that PtHg, AgHg, Pt_3Y, Pt_5Y and Pt_5La are all highly selective catalysts for the two electron ORR that produces H_2O_2. While many of these metals are still expensive, the similarities between the mechanism of direct synthesis and ORR (Section 3.3) may suggest that these alloys would be new and fruitful search directions for new catalysts for thermal H_2O_2 formation.

Hutchings et al. have shown recently that PdSn alloy catalysts (synthesized by incipient wetness and treated with a specific heating protocol) can give H_2O_2 selectivities greater than 95% in the absence of corrosive and toxic additives. Results from STEM-EELS mapping of the PdSn catalysts suggested that the initial oxidation step in air (773 K for three hours) forms a secondary SnO$_x$ support (Scheme 8a) which, when reduced in H_2 (473 K for two hours) in a second step, encases small Pd clusters that actively dissociate H_2O_2 by a strong metal-support interaction (Scheme 8b). The larger PdSn alloy clusters will also dissociate H_2O_2 when reduced, so a second oxidation step (673 K for four hours) is used to decrease the propensity for these clusters to dissociate H_2O_2 (Scheme 8c). This system may be generalized to metals other than Sn provided that they do not readily decompose H_2O_2 in their oxide form.

Scheme 8 Selective PdSn catalysts are created by (a) oxidation (calcined), forming a SnO$_2$ secondary support, then (b) reduction to cover the small Pd clusters with the SnO$_2$ so they cannot undergo secondary decomposition of H_2O_2, and (c) a final oxidation step which suppresses the PdSn alloy from decomposing/hydrogenating H_2O_2. Reproduced with permissions from S. J. Freakley, Q. He, J. H. Harrhy, L. Lu, D. A. Crole, D. J. Morgan, E. N. Ntainjua, J. K. Edwards, A. F. Carley, A. Y. Borisevich, C. J. Kiely and G. J. Hutchings, palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity, Science, 2016, 351, 965. Copyright 2016 American Associated for the Advancement of Science (AAAS).
form exothermic alloys or intermetallics with Pd, and can cover the small Pd clusters formed. Additional metals were tested in this study (e.g., Ni, Zn, Ga, In, Co) and found to also form highly selective catalysts when alloyed with Pd and subjected to the pretreatment procedure described above. Studies on alternatives to AuPd are an important advancement in direct synthesis research, because these findings help to provide new concepts for the design of selective catalysts, perhaps from more abundant and less costly metals.

Despite the significant improvements seen by alloying different metals with Pd, it would be desirable to find alternative and less expensive metals that can selectively catalyze the direct synthesis reaction. Towards this goal, Rankin and Greeley generated a two-dimensional Sabatier volcano plot of H_2O_2 formation rates and selectivities (calculated from a microkinetic model) for a number of transition metals (e.g., Pt, Pd, Ag, Au, Cu, Ir, Rh, Ni, Os, Co, Ru, Fe) as a function of the binding energies of O* and H* on those surfaces (Fig. 10). Metals that lie within the red area at the center of the volcano plot (i.e., $\Delta G_\text{O} = 1.5$ eV and $\Delta G_\text{H} = -0.4$ eV) oxidize H$_2$ at the greatest rates, however, these metals bind O-atoms (and O_2) strongly, and preferentially dissociate O-O bonds, which is consistent with previous reports on Pt and Pd and their location within the red region. Metals that fall within the shaded black region at the far right of the volcano plot (i.e., $\Delta G_\text{GO} > 2$ eV) have more negative free energy changes for steps in the selective pathway (i.e., O_2* and OOH* hydrogenation and H_2O_2 desorption) than those in the unselective pathway.

Fig. 10 Sabatier volcano depicting the binding energies of H* and O* on different metals. The shaded black region represents an area of high selectivity represented by inequalities 1, 3, and 4 in the original published work (not reproduced here). Reproduced with permissions from R. B. Rankin and J. Greeley, Trends in Selective Hydrogen Peroxide Production on Transition Metal Surfaces from First Principles, ACS Catal., 2012, 2, 2664. Copyright 2012 American Society of Chemistry.
(i.e., O–O bond dissociation). These metals are predicted to give greater selectivities to H$_2$O$_2$, which is consistent with Au falling into this category.151 A simple interpolation between the points representing Pd and Au suggests that alloys of the two metals could fall within both the red and shaded black portions of the volcano and thus be both active and selective, although such interpolations are a grossly simplified representation of the reactivity of bimetals (but may provide guidance for new search directions). This interpolation approach implies also that the ratio of Au to Pd surface atoms would have a significant effect on H$_2$O$_2$ selectivity, which is consistent with other studies.32,213,216 Importantly, similar interpolations suggest that other alloys containing both an active (red region) and selective (shaded black region) metal could be effective for direct synthesis, such as CuAg, CuAu, or PdAg.

Mavrikakis et al. studied H$_2$O$_2$ formation on the PdAg(110) surface and determined that PdAg alloys would most likely not be selective for H$_2$O$_2$ formation.190 Specifically, alloying Pd with Ag shifts the d-band center of both Pd and Ag terrace atoms to values that are 0.14 eV and 0.49 eV, respectively, closer to the Fermi level than those of Pd(111) and Ag(111). Such changes are expected to increase the reactivity of the catalyst and its propensity to cleave O–O bonds and form H$_2$O in comparison to Pd(111). The authors state that Pd$_1$Ag$_1$ alloys would likely be ineffective for direct synthesis.190 Greater Ag to Pd ratios, however, might be more effective, especially considering that AuPd catalysts with high Au to Pd ratios appear to be among the most productive and selective catalysts for direct synthesis.32,213,216 Grabow and coworkers examined the (211) surface of other Au alloys (e.g., AuPt, AuAg, AuCu, AuCd) using DFT in order to find alternative catalysts with potential to be highly selective towards H$_2$O$_2$. This study demonstrated that the selectivity towards H$_2$O$_2$ depends strongly on the position of the atoms within the clusters. All surfaces with step-sites fully occupied with Au atoms were predicted to give H$_2$O$_2$ selectivities greater than 98%. Similarly high selectivities are given when Pd or Ag are present at step-sites, however, H$_2$O$_2$ selectivities are expected to drop to 6% or less in the presence of Cu, Cd, or Pt at those edges. These results also show that the interactions between Au and Pd are somewhat unique and different from other transition metals.

The studies described above assume a Langmuirian mechanism for H$_2$O$_2$ formation, which is not consistent with experimental findings suggesting proton–electron transfer pathways.148,154,161 However, it seems likely that the predicted differences between barriers for O–O bond rupture and the hydrogenation of the resulting surface intermediates will be accurate, and consequently, these investigations can help to identify bimetals that may be useful as next generation direct synthesis catalysts.

3.4.4 Effects of the catalyst support. H$_2$O$_2$ selectivities and formation rates can differ significantly among metal (e.g., Pd) clusters, which are nominally identical but contact different carbon or metal oxide supports. For example, Hutchings et al. showed that the identity of the support can dramatically affect rates of H$_2$O$_2$ formation, hydrogenation, and decomposition on Pd, Au, and AuPd clusters supported on Al$_2$O$_3$,
TiO₂, MgO, or C. AuPd and Pd on C gave the highest H₂O₂ formation rates and selectivities, while AuPd and Pd on MgO provided the highest rates of H₂O₂ hydrogenation and decomposition. Reaction rates of metal clusters on TiO₂ and Al₂O₃ had values between those on MgO and C. Figure 11 shows that the H₂O₂ formation rates on AuPd clusters supported on these materials correlate roughly to the isoelectric points of the supports; specifically, supports with isoelectric points at lower pH values gave the highest rates of H₂O₂ formation and the lowest rates of H₂O₂ decomposition and hydrogenation. These reactions were conducted presumably at moderate pH (aqueous methanol with 33 MPa CO₂), which suggests that more negatively charged surfaces of supports favor H₂O₂ formation. These findings differ from trends observed in systems containing catalytically consequential anions originating from acid or halides added to the solvent, where it was suggested that positively charged surfaces were important to bind these negatively charged surface modifiers. However, the data for Fig. 11 was acquired in the absence of strongly binding anions (only H₂CO₃ in solution), and so some other phenomena provides the relationship between H₂O₂ selectivity and the isoelectric point of the support. Ouyang and coworkers studied direct synthesis on AuPd clusters supported on TiO₂ and claimed that the interface between the Au and the TiO₂ support provided unique sites favorable for H₂O₂ formation.

Supports may also influence H₂O₂ via strong metal-support interactions (SMSI), especially in cases where metal clusters are supported on reducible metal oxides such as SnO₂ or TiO₂, where the metal atoms from the support can migrate onto the metal clusters, subsequently re-oxidize, and block sites. The SMSI phenomenon appears prominently in the investigation of PdSn catalysts for H₂O₂ formation, in which selectivities

Fig. 11 H₂O₂ productivity as a function of the support isoelectric point over AuPd catalysts. Adapted from E. Ntainjua, J. K. Edwards, A. F. Carley, J. A. Lopez-Sanchez, J. A. Moulijn, A. A. Herzing, C. J. Kiely and G. J. Hutchings, Green Chem., 2008, 10, 1162 with permission from the Royal Society of Chemistry.
increase after a SnO\textsubscript{x} layer forms on PdSn alloys and completely encapsulates small Pd clusters following sequential oxidative and reductive treatments.169 Moreover, differences between the strength of the interactions between the support and each of the two metals in a bimetallic cluster can affect the distribution of each element within the cluster. For example, the surfaces of RuAu clusters are enriched with Ru when supported on MgO in comparison to those same clusters supported on SiO\textsubscript{2}.246 This same phenomenon likely affects the distribution of metal atoms with AuPd catalysts for direct synthesis, which are frequently supported on materials expected to interact strongly with metal atoms (e.g., MgO,183 TiO\textsubscript{2}155,167).

Acids are not just beneficial as an additive to the reaction solution, treatment of the catalyst support with the acid prior to the addition of the catalyst can also yield high selectivities towards H\textsubscript{2}O\textsubscript{2}. Hutchings et al. found that treating a carbon support with a non-halide containing acid (e.g., HNO\textsubscript{3} or CH\textsubscript{3}COOH) prior to the deposition of AuPd clusters increased H\textsubscript{2}O\textsubscript{2} selectivities from 80 to >98\%.168 The increase in selectivity was attributed to an increase in the ratio of Au to Pd surface atoms, however, it is possible that the acid treatment also removed small metal impurities (capable of H\textsubscript{2}O\textsubscript{2} hydrogenation) from the carbon support. In summary, there are a number of mechanisms by which the metal oxide and carbon supports used in these studies can affect the formation of H\textsubscript{2}O\textsubscript{2} significantly. Therefore, these topics certainly deserve further study.

3.4.5 Effects of the solvent.

The solvent itself may assist in the formation of H\textsubscript{2}O\textsubscript{2} directly (e.g., by acting as a co-reactant or catalyst) or indirectly (e.g., by influencing H\textsubscript{2} transport or solvating intermediates). Rates of H\textsubscript{2}O\textsubscript{2} formation are more than three orders of magnitude lower in aprotic solutions (e.g., acetonitrile, propylene carbonate, dimethyl sulfoxide) than in protic solutions (e.g., H\textsubscript{2}O, CH\textsubscript{3}OH).148 This indicates that H+ in solution are directly involved in direct synthesis of H\textsubscript{2}O\textsubscript{2}, likely by a proton–electron transfer mechanism146,154,161 as described in Section 3.3. Burch and Ellis examined the effects of individually combining 16 different organic co-solvents to a standard mixture of 1.6 M H\textsubscript{3}PO\textsubscript{4} and 6×10-4 M NaBr over Pd catalysts in water.247 The greatest H\textsubscript{2}O\textsubscript{2} selectivity (64\%) was achieved when acetonitrile was combined with the aqueous solvent (33 vol.\% acetonitrile in water). In comparison, 2-propanol and toluene gave H\textsubscript{2}O\textsubscript{2} selectivities of 31 and 3\%, respectively. The authors attributed the greater H\textsubscript{2}O\textsubscript{2} selectivities achieved with acetonitrile to more effective H\textsubscript{2} transport to the Pd surface, as a result of an increase in solubility of H\textsubscript{2} in the solution as well as the complete miscibility of acetonitrile with the aqueous mixture. Notably, H\textsubscript{2}O\textsubscript{2} was formed in this acetonitrile mixture likely because the water present in the system provided a catalytic amount of H+. Paunovic et al. performed a similar study of the effects of co-solvents using AuPd catalysts that showed also that aqueous acetonitrile solutions gave greater H\textsubscript{2}O\textsubscript{2} selectivities than just water (95 and 50\% respectively) and confirmed the finding by Burch and Ellis on pure Pd.248 Therefore, organic co-solvents such as aqueous acetonitrile or methanol (more
commonly used) are frequently used in studies of direct synthesis to overcome the limited solubility of H₂ into H₂O while also providing a source of H⁺. It would be desirable to use solvents that are both non-toxic and more easily separated from the product H₂O₂/H₂O solution than methanol. One seemingly elegant solution to this problem is the use of supercritical CO₂ as a solvent as first reported by Hutchings et al. The CO₂/H₂O solution is slightly acidic, non-toxic, and readily separated by lowering the pressure, however, the use of supercritical CO₂ requires significant energy for compression and suppresses catalytic activity towards direct synthesis. Finally, solvents may influence the formation rates of H₂O₂ (and H₂O) by preferentially stabilizing certain reaction intermediates present on the catalyst surface. As one example, hydrogen-bonding interactions are likely to be important, although this idea is not discussed much in the literature on direct synthesis. Computational work on electrochemical ORR by Janik et al. shows that hydrogen bonding in liquid water stabilizes charge transfer from the Pt(111) into the π* orbitals of O–O bonds, which facilitates O–O bond cleavage. Based off of this interaction and other DFT calculations, which demonstrate that H₂O stabilizes charge separation of the polar hydroxyl species within the transition state for CO oxidation on Pt(111), it is safe to assume that hydrogen bonding similarly stabilizes specific transition states within the network of reactions that form H₂O₂ by direct synthesis.

3.5 Outlook of direct synthesis

There have been many published methods for improving H₂O₂ selectivities for direct synthesis such as using additives, alloying metals, or implementing specific solvents or supports. However, many of these methods are impractical for the industrial scale due to environmental or economic constraints. In general, it is beneficial to reduce the number of contiguous sites on the catalyst surface by using strongly binding anions or by alloying with a less reactive metal. It is essential to use protonated solvents, otherwise the reaction cannot occur. In order to avoid secondary reactions that form H₂O from H₂O₂, the reaction should be carried out near or below room temperature and in flow reactors with low residence times (e.g., trickle bed reactors). If the residence time is low, then high H₂ to O₂ ratios increase selectivity towards H₂O₂ formation rather than hydrogenation. Acidic solutions and halide additives can dramatically increase selectivity, however, their role is not entirely clear. Future work investigating the mechanism by which these species increase the selectivity of direct synthesis would be valuable. CO₂ can seemingly perform the same function (in the form of H₂CO₃) as other acids and still achieve high selectivities, therefore, CO₂ is an excellent non-corrosive alternative to strong mineral acids. Bimetallic clusters have been shown to give the highest reported H₂O₂ selectivities (e.g., AuPd and PdSn), likely because these catalysts expose well dispersed monomers and small ensembles of the active metal (e.g., Pd). These catalysts still rely on precious metals (e.g., Pd, Au), therefore, directed searches for catalysts comprised of more abundant metals.
could reduce the costs of the industrial scale direct synthesis of H₂O₂. In addition, direct synthesis will be more economically viable if it can be conducted at higher temperatures (e.g., >300 K) and at lower pressures (e.g., <200 kPa), therefore, future work should focus on achieving high H₂O₂ selectivities at these conditions since many studies are conducted at conditions inherent to high selectivity (low temperature and high pressure).³⁷ The implication of proton–electron transfer during direct synthesis (Scheme 7) suggests that future work could combine the chemical driving force of the H₂ with an applied electrical field during the reaction in order to stabilize critical reaction intermediates and increase selectivity towards H₂O₂. Continued research will likely lead to a more complete understanding of direct synthesis chemistry and, potentially, to the replacement of the anthraquinone auto-oxidation process by on-site direct synthesis production plants.

4 General oxidation reactions for commodity chemicals

H₂O₂ is an environmentally benign oxidant with the potential to replace halogenated and noxious oxidants currently used in industry such as halogenated organics,⁴⁸,⁸⁰,²⁵₂,²⁵³ nitric acid,⁹¹ nitrous oxide,⁹¹,²⁵⁴ and permanganates,⁴⁷ which generally require organic solvents (discussed in Section 1).⁷⁷,²⁵⁵ Epoxidations are a closely related class of reactions, which have received a great deal of attention and are discussed in Section 5. Here we provide a brief overview of a few classes of oxidation reactions in which H₂O₂ has been demonstrated to be an effective replacement for the harmful oxidants currently used.

4.1 Alkane and alkene oxidation

The oxidation of lower alkanes (e.g., methane and ethane) to produce oxygenates is an important industrial reaction,⁵⁸,⁷¹,⁷⁶ because the products formed (i.e., methanol and ethanol) can be further utilized and upgraded to produce fuels and commodity chemicals.²⁵⁶,²⁵⁷ Currently, these small-molecule oxygenates are synthesized from alkanes via indirect reaction pathways, such as the steam reforming of natural gas to syngas and subsequent conversion to methanol at high temperature²⁵⁸ or the dehydrogenation of ethane followed by hydroxylation.²⁵⁶ These processes require high energy input, which has motivated the study of direct oxidation pathways of small alkanes to more synthetically and commercially useful oxygenates. Several strategies are being investigated to directly oxidize the alkanes to oxygenates, such as high temperature and pressure O₂ activation with supported Cu,⁷¹,²⁵⁹–²⁶¹ C–H activation by cationic Au in strongly acidic media,²⁶² and activation of N₂O/O₂ using transition metal catalysts (e.g., Fe,²⁶³ Co,⁶⁰ Mo²⁶⁴). Unfortunately, many of these strategies to directly oxidize lower alkanes suffer from low rates or selectivities,²⁶³,²⁶⁵,²⁶⁶ pose safety and environmental risks,²⁶⁷ or use greenhouse gases (e.g., NOₓ) for oxidation.²⁶⁸

Hutchings and coworkers studied the oxidation of methane and ethane with H₂O₂ over Cu and Fe oligomers supported within an MFI-type zeolite, ZSM-5 (SiO₂/Al₂O₃ = 30).⁵¹,⁵²,⁵⁹,⁷³,²⁶⁹ Fe-containing ZSM-5 (Fe/ZSM-5)
catalysts, prepared by hydrothermal synthesis, activate H$_2$O$_2$ and oxidize methane at mild temperatures (i.e., $<$373 K). The reaction of methane with H$_2$O$_2$ over Fe/ZSM-5 gives high selectivity (71%) towards formic acid production. X-ray diffraction (XRD), X-ray absorption near edge spectra (XANES), Fourier transform infrared spectroscopy (FTIR), and UV-vis spectroscopy suggest that the Fe centers exist in ZSM-5 as extra-framework FeO$_x$ clusters in both isolated and oligomeric forms, the latter of which is thought to be an active site for alkane oxidation. Increasing the Fe content from 0.5% to 2.5% resulted in increased methane conversion (0.3 to 0.8%) at constant residence time and increased selectivity towards CO$_2$ (4 to 12%) using 0.5 M H$_2$O$_2$ at 323 K. Diffuse reflectance UV-vis (DRUV) spectroscopy and high angle annular dark field (HAADF)-scanning tunneling electron microscopy (STEM) imaging show that high Fe loadings formed bulk (mean diameters 20–50 nm) Fe$_2$O$_3$ clusters located on the external surface of the zeolite crystals, which non-selectively oxidize methane. Consequently, a small amount of the Fe forms the oligomeric FeO$_x$ clusters responsible for the formation of methanol. Interestingly, addition of Cu to Fe/ZSM-5 (Fe-Cu/ZSM-5) increased the selectivity for methanol from 15 to 92% at 0.5% conversion (323 K, 0.123 M H$_2$O$_2$). The addition of Cu to Fe/ZSM-5 has little effect on the conversion of methane. High resolution transmission electron microscopy (HR-TEM) shows the presence of copper oxide species on the external zeolite surface. These CuO$_x$ species may limit the formation of hydroxyl radicals, which are generated by Fenton chemistry and can drive the non-selective oxidation of methane.

Hutchings et al. have also investigated the oxidation of ethane with H$_2$O$_2$ over Fe/ZSM-5 catalysts prepared by chemical vapor impregnation. Reaction of ethane with H$_2$O$_2$ over Fe/ZSM-5 catalysts gave high selectivity towards acetic acid (73%), whereas Fe-Cu/ZSM-5 primarily produces ethylene (38%) by oxidative dehydrogenation. Similar to their previous findings, both catalysts consume methane at similar rates when normalized on a per-kg catalyst basis. Increasing the Cu weight loading from 0 to 2.5 wt% on 1.25% Fe/ZSM-5 decreased the selectivity towards acetic acid from 65 to 43% and increased the ethylene selectivity sharply from \sim0 to 38%, while all other oxygenates (i.e., methanol, ethanol, carbon dioxide) accounted for the remaining 19%. From 1:1 to 1:6 ratio of Fe:Cu (at 0.4 wt% Fe), the selectivities to acetic acid and ethylene remained fairly constant at 43% and 38% respectively. Increasing Fe content (0.4 to 2.5 wt%) decreases the ethane conversion from 8% to 4%, which is attributed to the decomposition of H$_2$O$_2$ on bulk Fe$_2$O$_3$ clusters (mean diameter 20–50 nm) on the external surface. As the reactor pressure was increased from 1 bar to 30 bar (10% C$_2$H$_6$/Ar) at 0.123 M H$_2$O$_2$, the selectivity to liquid products including acetic acid (40 to 75%), ethanol (0 to 5%), and formic acid (5 to 15%) increased, which the authors attributed to greater interaction between the substrate, oxidant and catalyst at higher ethane concentrations (i.e., at high pressures). The authors noted that Fe/ZSM-5 gave different product distributions when subjected to different high-temperature oxidative or reductive treatments. For example, oxidative treatments (823 K, 3 h, air)
result in higher selectivities to formic and acetic acid from methane and ethane, respectively, whereas reductive treatments (823 K, 3 h, 5 kPa H₂) give high selectivity towards methanol and ethanol. For instance, a 1.1 wt% Fe/ZSM-5 subjected to oxidative treatments exhibited a methanol selectivity of 12% whereas the same catalyst, when subjected to a reductive treatment, gave relatively high selectivity (36%) in methanol. These differences may arise from an increase in the fraction of isolated and oligomeric Fe species, which, most likely, prevents the decomposition of H₂O₂ and activates the methane. Román-Leshkov and co-workers have investigated the catalytic oxidation of methane to methanol using zeolite-based Cu catalysts with oxygen at low reaction temperatures (483–498 K) to determine the structure of the Cu species which lead to the direct formation of methanol from methane. Cu-Na-ZSM-5 (Cu/Al = 0.37, Na/Al = 0.26) gave a methanol selectivity of ~71% (483 K, 2.5 Pa O₂) with CO₂ as the only other product. Using UV-vis spectroscopy and GC measurements over Cu-Na-ZSM-5, the authors have implicated mono-μ-oxo dicupric cores for methane oxidation. These electrophilic metal-oxygen species are highly reactive and readily cleave the C–H bond of methane to generate surface-bound methoxy groups. Similar structures may form upon exposing Cu-oligomers to H₂O₂ at lower temperatures. Other studies have also implicated [Cu₃O₃]²⁺ trimeric sites as being responsible for the C–H activation of methane and subsequent oxidation. Despite the widespread interest in small alkane upgrading, the mechanism behind direct oxidation of ethane and methane to alcohols and acids by H₂O₂ is not well understood on these materials. Fundamental insight into the roles that the catalyst and reaction conditions play in preventing H₂O₂ decomposition and secondary oxidation reactions will allow for the design of increasingly selective catalysts for alkane oxidation with H₂O₂.

The oxidation of cyclohexene can form adipic acid, which is an important monomer used in nylon. Currently, adipic acid is produced on industrial scales by the oxidation of cyclohexanol or cyclohexanol/cyclohexanone mixtures with HNO₃. This reaction produces NOₓ gases as a byproduct, which are harmful to human and environmental health, and results in a highly corrosive reaction mixture with subsequent quenching and purification steps. To produce adipic acid with a greener oxidant, Sato et al. have used aqueous 30% H₂O₂ to oxidize cyclohexene to adipic acid using Na₃WO₄–2H₂O catalyst with [CH₃(N-C₈H₁₇)₃N]HSO₄ as a phase-transfer catalyst (PTC) between the organic-aqueous phase to obtain a 93% yield of adipic acid at 348–363 K. Scheme 9 depicts the proposed mechanism for adipic acid formation from cyclohexene, which was supported by direct detection of the intermediates, cyclohexene oxide and 2-hydroxycyclohexanone by GC analysis of the reaction mixture. The mechanism involves three types of oxidation reactions: olefin epoxidation, secondary-alcohol oxidation, and the Baeyer Villager oxidation, followed by hydrolysis. The reaction requires 4.4 M H₂O₂ and the aqueous solvent containing the PTC and unreacted H₂O₂ can be reused. This process is also applicable to the oxidation of substituted cyclohexenes, and notably, the reaction uses...
much milder conditions than cyclohexene oxidation by HNO₃.⁴² Apart from Na₂WO₄, many tungsten based catalysts have been studied for cyclohexene oxidation using H₂O₂ (e.g., tungsten-containing SBA-15,²⁷⁶ peroxy tungstanates,²⁷⁷ H₂WO₄ on acidic resins,²⁷⁸ and [BMIm]₂WO₄ supported on silica sulphamic acid²⁷⁹) because tungsten is able to efficiently activate H₂O₂ to form a bisperoxytungstanate intermediate which is the believed to be the active intermediate of this reaction (see Section 5.2). Additionally, activated W-peroxy intermediates exhibit high stability and reactivity under acidic conditions, which is necessary for the hydrolysis of the intermittent anhydride to form adipic acid.⁴³,²⁷⁸–²⁸⁰

4.2 Oxidation of alcohols

The oxidation of alcohols is an industrially important type of reaction that is used in the production of pharmaceuticals, polymer precursors, fertilizers, and various other commodity chemicals.⁵⁷,⁶⁸,⁷⁵,²⁸⁰ Alcohol oxidations are one of the most studied reactions in organic chemistry and, as such, numerous methods have been developed for the selective oxidation of alcohols to aldehydes, ketones, and carboxylic acids.⁴²,⁷⁵,²⁵⁵,²⁸¹ However, many homogeneous and heterogeneous oxidation reactions that utilize organic and corrosive oxidants with harsh reaction conditions produce organic and corrosive waste, which requires subsequent separation and waste-treatment units, preventing many of these methods from becoming easily adopted by industry.⁴²,⁴⁷,⁷⁴,⁷⁵,²⁵⁵,²⁸² Researchers
have made extensive efforts to activate O$_2$ or H$_2$O$_2$ to replace various reaction systems containing organic solvents (e.g. DMSO with N,N'-dicyclohexylcarbodiimide (DCC))255 and corrosive oxidants (e.g., TEMPO, pyridinium chlorochromate (PCC)).77 Unfortunately, many oxidations with activated O$_2$ tend to have low rates of reaction (e.g., oxidation dehydrogenation of alcohols to aldehydes) and are certainly not viable for the selective oxidations of air-sensitive pharmaceutical precursors.281

Jacobson and co-workers in 1979, were among the first to demonstrate the oxidation of secondary alcohols (e.g., 2-octanol and cyclohexanol) to the corresponding ketones over W- or Mo-based catalysts using 90 wt% H$_2$O$_2$ in methanol.283 Oxidation rates of secondary alcohols show a first-order dependence on catalyst concentration and a first-order dependence on the concentration of the alcohol implying that the rate determining step involved the interaction of the catalyst-peroxo complex with the alcohol.283 Since then, significant effort has been made to increase the safety and economic viability of such processes. In the late 1990s, Noyori and co-workers demonstrated the oxidation of several long-chain primary (e.g., 1-octanol) and secondary (e.g., 2-octanol) alcohols by 3–30% wt H$_2$O$_2$ using an inexpensive sodium tungstanate (Na$_2$WO$_4$) catalyst.68,280 This reaction proceeds in a biphasic system consisting of an organic phase consisting of the hydrophobic alcohol and an aqueous phase containing Na$_2$WO$_4$ and H$_2$O$_2$. To prevent the use of any additional organic solvents, a phase-transfer catalyst (PTC) was used to facilitate the migration of the H$_2$O$_2$ and activated Na$_2$WO$_4$ from the aqueous to the organic phase. The acidity of the PTC was found to drastically affect the yield of the reaction. For example, [CH$_3$(n-C$_8$H$_{17}$)$_3$N]HSO$_4$ gave 97% yield of ketones whereas [CH$_3$(n-C$_8$H$_{17}$)$_3$N]Cl gave much lower ketone yields (i.e., 11%),68,280 because of the higher pH value in the aqueous phase when [CH$_3$(n-C$_8$H$_{17}$)$_3$N]Cl was used.56,68 Scheme 10 shows the bisperoxotungstanate ions formed by activation of H$_2$O$_2$ with Na$_2$WO$_4$, which has been proposed to be the active intermediate(s) in these oxidations.$^{284–286}$ However, these intermediates have yet to be shown to be directly involved in the oxidation of alcohols (i.e., they are proposed intermediates). Additionally, the three structures in Scheme 10, are believed to be

![Scheme 10](image-url)

Scheme 10 Structures of biperoxotungstanate ions which are believed to be the active species for alcohol oxidation upon activation of H$_2$O$_2$. Additionally, the three structures are believed to be in rapid equilibrium with each other. Recreated from K. Sato, M. Aoki, J. Takagi, K. Zimmermann and R. Noyori, *Bull. Chem. Soc. Jpn.*, 1999, 72, 2287. Copyright The Chemical Society of Japan.
in rapid equilibrium with one another. The academic consensus is that compound 10a is not very active for alcohol oxidation, and that compound 10c is unable to shuttle to the organic phase of the reaction (i.e., does not move with the PTC to react). This is because compound 10b can undergo ion exchange between Na\(^+\)/PTC to shuttle to the organic phase and react. As such, Scheme 10b is believed to be the active intermediate for oxidation reactions, and exhibits high stability in acidic media (i.e., pH between 0.3–4), which supports the use of PTCs with a hydrogen sulfate counterion. Biphasic oxidations such as this one have been extensively used for olefin oxidation and with intermediates similar to the center intermediate observed. Noyori and co-workers found that the rate for oxidizing secondary alcohols to ketones was greater than that for oxidizing primary alcohols to aldehydes. Secondary alcohols that possess a C=C bond provide an opportunity to study the chemoselective preference to form a ketone in comparison to an epoxide. The biphasic system promotes olefin epoxidation in the presence of a promoter (e.g., (aminomethyl)phosphoric acid), which may either act as a protecting group for the alcohol or occupy W centers on the catalyst and activate the olefin epoxidation pathway. Without the promoter, the selectivity towards alcohol oxidation to form the unsaturated aldehyde increases primarily due to the decrease in the rate of olefin epoxidation.

Scheme 11 shows the oxidation pathways of primary alcohols to aldehydes, esters, and carboxylic acids, which is more complex than the oxidation of secondary alcohols. The over oxidation of aldehydes to

![Scheme 11](image-url)
form esters or carboxylic acids makes selective formation of specific functional groups challenging, as water, alcohols, and other nucleophiles present in the system may react with aldehydes to give a number of secondary products. For example, upon formation of aldehydes, further oxidation produces hemiacetals, geminal alcohols, or 1,1-peroxy alcohols that can further react to produce esters or carboxylic acids.68 Additionally, oxidation rates of primary alcohols (\textit{e.g.}, 1-octanol) were less (37\% lower) than those for the corresponding secondary alcohols (\textit{i.e.}, 2-octanol).68 Further, primary alcohol oxidation with \(\text{H}_2\text{O}_2 \) tends to form the corresponding carboxylic acid as the primary product (\textit{e.g.}, 87\% yield for octanoic acid from 1-octanol oxidation).68,280 Noyori and co-workers demonstrated that \(\text{Na}_2\text{WO}_4 \) selectively oxidizes benzyl alcohol to either benzaldehyde or benzoic acid and that the product selectivity depends sensitively on the concentration of \(\text{H}_2\text{O}_2 \).57,280 For example, at 2.5 equivalents of \(\text{H}_2\text{O}_2 \) (with respect to benzyl alcohol), benzoic acid is the major product (81\% yield) because benzaldehyde readily undergoes successive oxidation with the remaining \(\text{H}_2\text{O}_2 \) to form benzoic acid in the presence of a PTC at 363 K (Scheme 11). The electronic properties of the active intermediates in these reactions were probed by developing Hammett relations based on comparisons of the relative rates of reaction (\(\nu_x / \nu_H \)) of parasubstituted benzyl alcohols (\textit{e.g.}, \(p \)-methoxybenzyl alcohol, \(p \)-chlorobenzyl alcohol) over \(\text{Na}_2\text{WO}_4 \) catalysts in 5 wt\% \(\text{H}_2\text{O}_2 \) with a PTC (363 K).280 Figure 12 shows that the Hammett constant (\(\rho \)) is \(-0.31\), which suggests that a slight positive charge accumulates in the transition state for benzyl alcohol oxidation and that electron rich alcohols oxidize at higher rates.280

Fig. 12 Hammett plot for the oxidation of \(p \)-substituted benzyl alcohols. Reproduced from K. Sato, M. Aoki, J. Takagi, K. Zimmermann and R. Noyori, \textit{Bull. Chem. Soc. Jpn.}, 1999, 72, 2287; with permission from the Chemical Society of Japan.
Despite a significant amount of research on the topic of the oxidation of alcohols with H_2O_2, these reactions have still not been incorporated into medium scale industries, due in part to the high cost of H_2O_2. These oxidations are clean, simple, and as demonstrated in the cases above, can give reasonable product yields.

4.3 Other oxidation reactions with H_2O_2

Sulfides (R_2S) and sulfones (R_2SO_2) are common chemical moieties in various commodity chemicals and pharmaceuticals. Typically, sulfones are prepared by the stepwise oxidation of sulfides to sulfoxides (R_2SO) then to sulfones. NaClO, NaBO_3, RuO_4, HNO_3, and KMnO_4 are commonly used to produce sulfones, however these species are non-catalytic and are used in stoichiometric amounts. Moreover, these oxidants are generally corrosive and pose an environmental risk. As such, researchers have attempted to develop processes that use greener oxidants (e.g., H_2O_2 and O_2) as alternatives. Oxidations of organosulfur compounds (e.g., thiophenes, benzothiophenes, bis(2-chloroethyl) sulfide) are relevant for the production of clean burning fuels (by oxidative desulfurization processes) and the destruction of chemical warfare agents (CWA, by hydroperoxidolysis and oxidative hydrolysis) by converting sulfides into less harmful and easily extracted sulfoxides and sulfones. Current methods (e.g., hydro-desulfurization (HDS), hydrolysis) for removing sulfur from crude oil and destroying CWAs suffer from low rates and require energy-intensive process conditions (i.e., high temperatures and pressures).

The oxidation of a dialkyl sulfide to the corresponding sulfone proceeds via the sulfoxide intermediate. The sulfoxide can be obtained as a product by reacting an equimolar mixture of the sulfide and 30% wt H_2O_2 at 308 K in the absence of a catalyst. The absence of the catalyst slows down the oxidation to sulfone drastically and the sulfoxide can be isolated. Noyori et al. used Na_2WO_4 and H_2WO_4 catalysts to oxidize diphenyl sulfide to the corresponding sulfone with 30 wt% H_2O_2 (2.5 equiv.), [CH$_3$(n-C$_8$H$_{17}$)$_3$N]HSO$_4$ (i.e., a PTC), and C$_6$H$_5$PO$_3$H$_2$ (i.e., a typical additive), as shown in Scheme 12. At 298 K and using Na_2WO_4 catalyst, the reaction yield was 72% after 2 hours. H_2WO_4 gave comparable sulfone yield (~66%) under similar reaction conditions suggesting that the counter ion (i.e., H^+ or Na^+) does not affect the reaction and the tungstate activates H_2O_2 for sulfide oxidation. The yield decreased when [CH$_3$(n-C$_8$H$_{17}$)$_3$N]Cl was used as a PTC, likely because of an increase in pH of the aqueous medium akin to alcohol oxidation. The reason for this pH dependence can be that the bis $\eta^2\text{W}^\cdot\cdot\cdot\text{O}_2$ is considered to be the active species of the reaction, is most stable at low pH value (0.3–4). Interestingly, the authors suggest that the HSO$_4^-$ anion of the PTC assists in the formation of the bis $\eta^2\text{W}^\cdot\cdot\cdot\text{O}_2$ active intermediate (see Section 5.2), while the ammonium counter-ion shuttles the active oxidant (Scheme 12) to the organic phase for reaction with the sulfide. The phenyl phosphonic acid additive ligates to the W-atom and increases the rate of sulfide oxidation, perhaps by donating electron density and thus increasing the reactivity of the $\eta^2\text{W}^\cdot\cdot\cdot\text{O}_2$ (Scheme 12). These catalysts...
effectively oxidizes both aliphatic and aromatic sulfides, although oxidation rates of aromatic sulfides are greater. High yields (>90%) were obtained for all substrates (diphenyl sulfide, di(p-nitrophenyl) sulfide, 2-hydroxyethyl phenyl sulfide, etc.) with 30 wt% H₂O₂, Na₂WO₄, C₆H₅PO₃H₂ and [CH₃(n-C₈H₁₇)₃N]HSO₄, which suggested that the presence of electron withdrawing groups like –NO₂ or even bulky tertiary alkyl groups on the phenyl ring did not affect yields significantly.

Current research is directed toward oxidative desulfurization by H₂O₂ using transition metal based catalysts (e.g., Mo, Nb, Ti, and W) that are known to readily oxidize thiophenes and sulfides. Hutchings and co-workers studied the oxidation of sulfides to sulfones using H₂O₂ over Ti-incorporated zeolite catalysts (e.g., TS-1 and Ti-β) in methanol. The authors studied the relationship between substrate oxidation reactivity and shape-selectivity by probing the oxidation of four isomeric butyl-methyl thioethers using 30 wt% H₂O₂. TS-1 catalyzed reaction gave high yields of sulfone (>90%) and almost 100% selectivity for all isomers except the tert-butyl methyl isothioether (8% yield after 96 h), because the tert-butyl group is sterically too large to fit into the...
pores of TS-1 (5 Å diameter). Ti-β possess larger pores (7 Å diameter) and accommodates the tert-butyl substituted sulfides. Consequently, Ti-β rapidly oxidized all isomeric sulfides to the corresponding sulfones. Additionally, allyl methyl thioethers were used to study the competitive reactions between sulfide oxidation and olefin epoxidation. The authors found that the sulfide was predominantly oxidized with the allylic double bond intact. This result has been attributed to the greater nucleophilicity of the lone pair of electrons on S as compared to the π electrons of the carbon–carbon double bond which coordinate strongly to the Lewis acidic Ti active sites, leading to preferential sulfur oxidation. Ti-nanotubes (TiNTs) have been shown to catalyze the oxidation of sulfides using H₂O₂ and also to be useful supports for tungsten oxide catalysts that can catalytically oxidize sulfides to corresponding sulfones. H-TiNT (synthesized by hydrothermal method) gave complete conversion of dibenzothiophene (DBT) to the sulfone (e.g., 0.1 mol DBT per gram of H-TiNT) using 0.1 M H₂O₂ after 60 min at 298 K. The high surface area of the mesoporous TiNTs leads to the formation of high concentrations of superoxide radicals (O₂⁻) on the surface, which was detected by electronic paramagnetic resonance (EPR) spectroscopy. Cortes-Jácome et al. also used DBT to test the catalytic properties of WOₓ supported on TiNTs with 30 wt% H₂O₂ at 333 K. The authors proposed the formation of Na₂WO₄ nanoparticles (residual atoms from the alkaline precursor) with W atoms coordinated in a tetrahedral geometry, which exposed the sites that gave the greatest rates for DBT oxidation to the corresponding sulfone. Carniato et al. synthesized a bifunctional catalyst with strong oxidizing and Brønsted acid properties by incorporating Nb(V) into a saponite clay (SAP) framework using a hydrothermal synthesis process. In the presence of 30 wt% H₂O₂ at 298 K, pure SAP (without Nb) oxidized 20% of the 2-chloroethyl ethyl sulfide (CEES) substrate, which demonstrated that Brønsted acid sites in the support were active for oxidation. However, Nb/SAP gave high conversion of the CEES to the sulfoxide and sulfone at identical conditions (298 K, 14 mM CEES, 20 mg catalyst) showing that the NbOₓ species formed were active. The most desired product of CEES oxidation is the sulfoxide, because it is less hazardous than the corresponding sulfone. The selectivity to the sulfoxide (CEESO) was 73% at a CEES conversion of 98% after 8 h, and the selectivity to the sulfone (CEESO₂) increased after the complete consumption of the sulfide as the reaction time was increased beyond 8 h. Another transition metal based material, molybdate catalyst was used with 50 wt% H₂O₂ at 243 K to study the oxidation of bis(2-chloronethyl)sulfide. It was seen that in a microemulsion of water and oil, bis(2-chloronethyl)sulfide oxidizes rapidly to the sulfoxide (half-life less than 30 s). Molybdate is thought to activate peroxide and produce singlet oxygen species, which diffuse through the solvent and homogeneously oxidize the substrate. Despite the recent interest in these new catalytic systems, the literature could benefit from detailed fundamental studies behind sulfide oxidation, which will help guide the rational design of novel catalytic systems.

The oxidation of alkyl and aromatic sulfides with H₂O₂ is a relevant set of chemistry for oxidative desulfurization and organosulfur deactivation.
among other uses. Although the literature contains several examples of successful catalysts for this chemistry, there are relatively few published studies that address fundamental questions regarding the mechanism or structure-function relationships for these reactions. This is a major roadblock in the rational design of catalysts for sulfur oxidation reactions and effort needs to be directed towards understanding the nature of active sites, the role of support morphology, and the cooperative effects of the support and active sites in influencing the efficiency of the oxidation process.

5 Olefin epoxidation catalysts

5.1 Zeolites

Although a number of different transition metal substituted zeolites have been used for epoxidations, titania silicalite (TS-1) has received the most attention since the report by Clerici et al. in 1991.66 This seminal work demonstrated that TS-1 catalyzed the epoxidation of propylene with H\textsubscript{2}O\textsubscript{2} in both water or aqueous methanol solutions with the epoxide selectivity exceeding 90\%.66 Clerici et al. showed later that epoxidation rates of \(\alpha\)-olefins decrease with increasing chain length (e.g., 1-pentene > 1-hexene > 1-octene; Table 5)102 and that epoxidation rates of cyclic alkenes (e.g., cyclohexene) are an order of magnitude less than those for 1-pentene.297 These lower epoxidation rates for cyclohexene result from the difficulty of larger molecules to diffuse through the relatively small pores (~5 Å diameter)298,299 such that epoxidation occurs primarily on the external surface of TS-1 crystals. Comparisons in Table 5 show that epoxidation rates of allylic alcohols, allylic chloride, and \(\alpha\)-olefins increase with the electron-richness of the C=C bond of the olefins, which suggests that H\textsubscript{2}O\textsubscript{2} activates on TS-1 to form an electrophilic intermediate. Scheme 13 shows the penta-coordinated metallacycle, proposed by Clerici, gains its electrophilic character from the polarization of the –OOH appendage by interaction with a neighboring silanol defect or solvent molecule.300

<table>
<thead>
<tr>
<th>Olefin</th>
<th>(t_{1/2}) (min)</th>
<th>(t) (min)</th>
<th>H\textsubscript{2}O\textsubscript{2} (conv. %)</th>
<th>Selectivity (% on H\textsubscript{2}O\textsubscript{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Pentene</td>
<td>5</td>
<td>60</td>
<td>94</td>
<td>91</td>
</tr>
<tr>
<td>1-Hexene</td>
<td>8</td>
<td>70</td>
<td>88</td>
<td>90</td>
</tr>
<tr>
<td>1-Octene</td>
<td>5</td>
<td>45</td>
<td>81</td>
<td>91</td>
</tr>
<tr>
<td>Cyclohexene</td>
<td>–e</td>
<td>90</td>
<td>9</td>
<td>–e</td>
</tr>
<tr>
<td>Allyl chloride</td>
<td>7</td>
<td>30</td>
<td>98</td>
<td>92</td>
</tr>
<tr>
<td>Allyl alcohol</td>
<td>16</td>
<td>35</td>
<td>81</td>
<td>72</td>
</tr>
</tbody>
</table>

b 0.90 M Olefin, 0.18 M H\textsubscript{2}O\textsubscript{2}, 6.2 g L–1 TS-1, Methanol solvent.
c \(t_{1/2}\) is the time required for 50% H\textsubscript{2}O\textsubscript{2} conversion, monitored by iodometric titration.
d \(t\) is the reaction time.
e Not determined.
The initial success of TS-1 as an epoxidation catalyst sparked interest in developing new schemes to maximize selectivity to epoxide products, especially by minimizing the secondary reaction of epoxides with solvent molecules. During the epoxidation of propylene over TS-1 in a batch reactor, investigators noted that the pH of the solution decreased after 90 minutes at 333 K, which was attributed to leaching of trace amounts of aluminum atoms from the MFI framework resulting in acidic silanol defects within the zeolite. Epoxides are known to ring open in acidic media, which results in lower yield by the conversion of epoxides via solvolysis. These reactions can be suppressed by washing TS-1 with a dilute sodium acetate (NaOAc) solution, which is thought to neutralize the silanol defects by ion exchange. This treatment increases propylene oxide (PO) selectivities from 70% to upwards of 90% PO by decreasing the degree of PO solvolysis to form propane-diol and propylene glycol methyl ether. Subsequently, Wang et al. showed that the addition of Na₂CO₃ to a pure methanol solution increased the PO selectivity of TS-1 from 5.1% to 94%. Both NaOAc and Na₂CO₃ are believed to act as basic pH buffers, which neutralize acid sites and consequently increase PO selectivities. These observations, together with those of Clerici et al., suggest that epoxide yields are sensitive to the presence of even small numbers of acid sites in TS-1 (or related catalysts) and that pH buffers (or basic-site titrants) are needed to avoid the activation and ring opening of epoxides.

Several groups have used a range of spectroscopic methods to probe the structure of the active intermediate(s) that forms by the reaction between H₂O₂ and Ti-atoms within TS-1. In the early 2000s, Frei et al. exposed TS-1 to H₂O₂/H₂O mixtures and acquired infrared (IR) spectra of the resulting intermediates in vacuo. Reaction between TS-1 and H₂¹⁶O₂ generated an absorbance peak at 837 cm⁻¹; however, the same experiment performed with H₂¹⁸O₂ gave a peak at 793 cm⁻¹, which suggests that the feature corresponds to a O–O stretching mode within a η¹ titanium–hydroperoxy (Ti–OOH) or a η² peroxide (Ti–O₂⁻) intermediate. Consequently, the authors assigned these peaks to the v₅(O–O) mode of the η¹ Ti–OOH moiety (Fig. 13), as this was the most stable intermediate proposed from ab initio and DFT calculations. Alternatively, Zecchina et al. proposed that a “side on” η² Ti–OOH complex forms by activation with H₂O₂ on TS-1 based on a combination of UV-vis and resonant Raman spectra. In these studies, Raman spectra show a strong peak that emerges at 618 cm⁻¹, which was attributed to the
symmetric breathing mode of a Ti–O$_2^-$ ring.304,306 The feature at 618 cm$^{-1}$ was assigned based on similarities to the vibrational structure of a solid-crystalline standard ([NH$_4^+$]$_3$[TiF$_5$O$_2$]$^{3-}$), which is known to possess an analogous Ti–O$_2$ metallacycle based on crystallographic data. UV-vis spectra show that charge-transfer features form at 220 and 385 nm after dosing TS-1 with H$_2$O$_2$ solutions, and concomitantly, the TS-1 develops a yellow color.307 Figure 14 suggests that the Ti–OOH and Ti–O$_2^-$ complexes that were assigned to the 220 and 385 nm features, respectively. The identity of the species that is responsible for epoxidations is still debated because these intermediates rapidly interconvert, making it difficult to definitively link one to the selective formation of PO or other epoxides. Consequently, Ti–OOH intermediates are generally invoked as the active species for olefin epoxidations over TS-1 (and M–OOH intermediates on similar metal oxide catalysts), because Ti–OOH more closely resembles the electrophilic intermediate posited by Clerici102 than does the electron-rich Ti–O$_2^-$ species.

Despite the apparent success of TS-1 as a catalyst for propylene epoxidation, it has been integrated into few processes with the exception of the HPPO process because the small pores (~5 Å in diameter)299 of the MFI framework accommodate only small substrates. Consequently, a
number of researchers have attempted to translate the active site structure of TS-1, and the associated high selectivities and rates, to the epoxidation of larger olefins by using other zeolite frameworks with larger pore diameters.78,97,98,308–312 The zeolite *BEA polymorph is an appealing candidate, because *BEA has larger pores (~7 Å in diameter)299 and a relatively low framework density, which together allow bulkier olefins access to active sites for epoxidation. For example, cyclooctene (a reactant which is not epoxidized over TS-1), was epoxidized with 100% selectivity to the epoxide with H$_2$O$_2$ in a titanium-substituted *BEA (Ti-BEA) catalyst.98 Corma \textit{et al.} show that Ti-BEA catalyzes the epoxidation of various olefins (\textit{e.g.}, 1-hexene, 1-octene, cyclohexene, 1-methyl-1-cyclohexene, \textit{etc.}) in methanol with higher rates of reaction for the substituted and cyclic olefins in comparison to TS-1, but with increased rates of solvolysis resulting in diol and glycoether formation.313 Interestingly, they demonstrated that increases in the small amount of framework aluminum present in the Ti-BEA gave lower selectivities towards epoxides, apparently by facilitating the nucleophilic attack of the epoxide by water or methanol to form diols or glycoethers, respectively.97 Notably, the link between epoxide selectivity and aluminum content in Ti-BEA is similar to the previously mentioned findings on TS-1,66,301 which confirms that acid sites related to framework aluminum atoms catalyze the solvolysis of epoxides. As seen for TS-1, epoxide selectivities greater than 90% can be achieved by eliminating the acid sites in Ti-BEA. For example, aluminum-free Ti-BEA synthesized through a hydrothermal precipitation method epoxidizes linear olefins (\textit{e.g.}, 1-hexene, 1-octene, 4-octene, 1-decene, \textit{etc.}) with turnover rates greater than 127 mol$_{\text{epoxide}}$/mol$_{\text{Ti}}$/h with greater than 90% selectivity to the epoxides.96 Van der Waal \textit{et al.} compared the rates and selectivities for the epoxidation of larger alkenes (\textit{e.g.}, norbornene and limonene) between TS-1 and Ti-BEA to probe the effects of different pore sizes on these reactions.96 Ti-BEA catalyzes the epoxidations of norbornene with H$_2$O$_2$ and achieves 8% conversion with 89% selectivity after one hour (acetonitrile, 343 K); however, TS-1 did not produce measurable quantities of the epoxide under the same conditions. Yet, Ti-BEA gave little regioselectivity towards specific C=C bonds in reactants presenting multiple C=C bonds such as limonene, which was epoxidized to form both endocyclic and terminal epoxides with comparable selectivities of 45% and 55%, respectively (Scheme 14).

\textbf{Scheme 14} Epoxidation products of racemic Limonene with H$_2$O$_2$ over a Ti-BEA catalyst.
Titanium has also been incorporated into the MWW zeolites, which contain a range of pore diameters (5–10 Å) and possess reaction rates for cyclohexene epoxidation that are comparable to Ti-BEA. Ti-MWW was shown to have high thermal stabilities and recyclability (5 sequential uses with no detectable drop in reactivity) after post-reaction calcination. However, the authors found that residual B-atoms in the framework (where B is present from the synthesis of the framework) form Brønsted acid sites, which reduce the selectivity for epoxides and favor the formation of diols and glycoethers. The authors synthesized a series of Ti-MWW with increasing loadings of Ti (0.1–0.7 mmolTi g\(^{-1}\)) and found that the reaction rate of 1-hexene epoxidation to form 1-hexene oxide initially increases with the Ti content of the zeolite (due to greater numbers of Lewis acid active sites). Rates eventually decrease due to the presence of non-selective and diffusion hindering TiO\(_x\) oligomers within the pores (~5.7 Å in diameter). When the loading of Ti in Ti-MWW catalysts is low, the Ti atoms are dispersed fairly evenly throughout the framework. As the amount of Ti is increased, TiO\(_x\) oligomers form in the pores and channels of the zeolite, which sterically hinder the diffusion of reactant molecules. As such, the synthesis procedure and metal loading for the incorporation of Ti-atoms into other zeolite frameworks affects olefin epoxidation, and therefore, molecular control of the Ti-atom density within the framework must be considered to fine-tune the reactivity and selectivity of these catalysts.

A number of transition-metals (e.g., Ti, Nb, V, Sn, Zr, Hf, Cu, and Fe) have been substituted into zeolite frameworks using synthetic and post-synthetic methods to produce epoxidation catalysts. Figure 15 depicts one convenient method for post-synthetic modification of Al-containing zeolites, described by Hunger and coworkers. This approach utilizes dealumination of commercial Al-containing zeolites either by steam hydrolysis, microwave irradiation in acidic media, or acid treatment in hot HNO\(_3\), all of which remove Al-atoms to trace levels and yield silanol pockets in the zeolite framework. Subsequently, cationic metal complexes are ion exchanged into these pockets by either solid-state ion exchange (i.e., the metal...
precursor and the dealuminated zeolite are intimately combined by mechanical grinding) or liquid-phase ion exchange (i.e., the dealuminated zeolite is mixed with a solution containing the cationic precursor).

Wang and coworkers developed an Fe-substituted MCM zeolite (Fe-MCM) that epoxidizes styrene with H₂O₂ with reasonable reaction rates \((8.9 \text{ (mol Styrene)} \text{ (mol Fe h)}^{-1}) \) and with moderate epoxide selectivity (42%) with respect to benzaldehyde formation (37%). The reaction rate was found to increase in proportion with the Fe loading, which results from the increased density of active sites on the catalyst, but eventually decreases (above 1.1 wt% Fe) due to the decomposition of H₂O₂ over FeOₓ clusters that begin to form at these high metal loadings from extraframework Fe. When H₂O₂ was added dropwise (i.e., the concentration was kept low throughout the reaction), the selectivity for epoxide formation increased from 7.8% (when H₂O₂ was added all at once) to 17% over two hours at 346 K. The decomposition of H₂O₂ occurs through the bimolecular reaction with the M–OOH intermediate over metal–oxide catalysts. Therefore, epoxides form selectively following the formation of Fe–OOH if the concentration of styrene is much higher than that of H₂O₂. Our group synthesized a Nb-incorporated *BEA zeolite (Nb-BEA) to study the mechanism of cyclohexene epoxidation with H₂O₂. Cyclohexene epoxidation reacts via an Eley–Rideal mechanism where H₂O₂ reversibly adsorbs to a Nb active site, followed by irreversible formation of both Nb–(O₂)⁻ superoxide and Nb–OOH intermediates. Nb–(O₂)⁻ was found to epoxidize cyclohexene, while Nb–OOH appears to interconvert to form Nb–(O₂)²⁻. Interestingly, both the rate and selectivity of cyclohexene oxide formation depends heavily on the ratio of cyclohexene concentration to that of H₂O₂ \(([\text{C}_6\text{H}_{10}]:[\text{H}_2\text{O}_2]) \). The highest rates (13 mol_{epoxide} mol_{Nb}⁻¹ h⁻¹) and selectivities (97%) are observed at high \([\text{C}_6\text{H}_{10}]:[\text{H}_2\text{O}_2])\), because Nb–(O₂)⁻ reacts with cyclohexene or H₂O₂ at rates proportional to their liquid-phase concentrations. Additionally, comparisons of activation enthalpies \((\Delta H^\ddagger) \) and entropies \((\Delta S^\ddagger) \) for epoxidation \((\Delta H^\ddagger = 72 ± 7 \text{ kJ mol}^{-1}, \Delta S^\ddagger = -35 ± 21 \text{ kJ mol}^{-1} \text{ K}^{-1}) \) and H₂O₂ decomposition \((\Delta H^\ddagger = 45 ± 5 \text{ kJ mol}^{-1}, \Delta S^\ddagger = -91 ± 30 \text{ kJ mol}^{-1} \text{ K}^{-1}) \) show that H₂O₂ decomposition is enthalpically favored and H₂O₂ selectivity towards epoxidation increases with increasing temperatures. Thus, epoxidation reactions will give maximum selectivities at both high ratios of \([\text{C}_6\text{H}_{10}])\) to \([\text{H}_2\text{O}_2])\) and high temperatures.

Transition metal substituted zeolites have been a well-studied class of catalysts since the introduction of TS-1 in the early 1990s. The narrow substrate scope of TS-1 has led to the incorporation of Ti (and other transition metals) into larger zeolite frameworks (e.g., *BEA, MCM, MWW) to catalyze the epoxidation of bulkier alkene substrates. A number of studies have demonstrated that high epoxide selectivities rely on eliminating or neutralizing Brønsted acid sites within the zeolite, because such sites catalyze solvolysis reactions that ring open epoxides and reduce yields. Yet, despite the interest in developing novel and increasingly selective epoxidation catalysts, a number of questions remain regarding the mechanism and active intermediates for olefin epoxidation as well as...
correlations between catalyst reactivity and selectivity to the elemental identity of the metal atom. As such, there is significant potential for developing useful epoxidation catalysts using other transition metal substituted zeolites.

5.2 Polyoxometallates

Polyoxometallates (POMs) are an important class of homogeneous and heterogeneous catalysts with complex metal oxide structures generally consisting of catalytically active anions with a variety of cations that balance charge. POMs have garnered attention over the past decades for their use in a number of reactions involving epoxidations. While peroxotungstates (W-POMs) and peroxomolybdates (Mo-POMs) were the first POMs reported as catalysts for epoxidations, a number of other transition-metal substituted POMs have been developed for this chemistry in recent years.

Early studies of POM-catalyzed olefin epoxidations primarily focused on homogeneous W-POMs with less emphasis on their Mo counterparts, because the Mo-POMs gave higher non-selective \(\text{H}_2\text{O}_2 \) decomposition rates and thus lower epoxidation selectivities. In addition, Mo-POMs were more frequently used in stoichiometric amounts, making the process non-catalytic. Ishii and coworkers discovered that the \(\text{H}_3[\text{PW}_{12}\text{O}_{40}] \) POM efficiently epoxidizes linear (e.g., 1-octene) and cyclic (e.g., cyclooctene, 3-vinyl cyclohexene) alkenes with \(\text{H}_2\text{O}_2 \) in the presence of a PTC, such as cetyl pyridinium chloride. PTCs transfer the active oxidant from the aqueous to the organic phase in biphasic systems, and consequently provides greater selectivities for epoxides by minimizing hydrolysis of the oxirane rings and the formation of diols.

Typically, W-POMs are synthesized in situ by reactions between tungstic acid (\(\text{H}_2\text{WO}_4 \)), a phosphate, and an ammonium or phosphonium counter ion. The identity of both the POM and its counter ion affect the catalytic rate and selectivity for olefin epoxidation. Efforts to determine the optimal combinations of counter ions a priori have been unsuccessful, therefore, the optimization process remains largely empirical. For instance, Noyori et al. demonstrated that W-POM catalysts deactivate when used with PTCs that incorporate either chloride or hydroxyl anions, whereas those consisting of hydrogen sulfate gave higher yields (Table 6).

Clear and accurate descriptions of the structure of the active metal centers of POM catalysts are difficult to acquire, because most POMs form in situ. However, in 1985, Venturello et al. synthesized a novel W-POM (\([\text{C}_6\text{H}_{13}]_4\text{N}^+ [\text{PO}_4[\text{W}(\text{O})(\text{O}_2)_2]_4]^{3-}\)) and characterized the structure using X-ray crystallography. Scheme 15 shows the structure of this W-POM, which consists of a \(\text{PO}_4^{3-} \) group and four \([\text{W}(\text{O})(\text{O}_2)_2]_4 \) species, each of which contain two \(\eta^2-\text{O}_2 \) metallacycles that are believed to be active for olefin epoxidation. Importantly, this crystal structure helped in identifying the active oxygen species (\(\eta^2-\text{W-O}_2 \)) in the W-POM (\(\text{H}_3[\text{PW}_{12}\text{O}_{40}] \)) developed by Ishii et al. Aubry et al. combined UV-vis, IR, Raman, and NMR characterization to independently confirm that the active species for epoxidation is in fact the \([\text{PO}_4[\text{W}(\text{O})(\text{O}_2)_2]_4]^{3-}\) ion.
proposed by Venturello (Scheme 15). Contact of H₃[PW₁₂O₄₀] with aqueous H₂O₂ decreased the intensity of a UV-vis absorbance feature at 252 nm, which is evidence for the formation of a reactive intermediate, while ³¹P NMR spectra showed peaks at −12.4 and −11.8 ppm, which are

Table 6 Effects of phase-transfer catalyst on the epoxidation of 1-octene.⁹,¹⁰

<table>
<thead>
<tr>
<th>Phase-transfer catalyst</th>
<th>Yield (%) Without solvent</th>
<th>In toluene</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>[(n-C₁₀H₂₁)₄N]HSO₄</td>
<td>69</td>
<td>83</td>
</tr>
<tr>
<td>[CH₃(n-C₈H₁₇)₃N]HSO₄</td>
<td>86</td>
<td>94</td>
</tr>
<tr>
<td>[R₄(CH₃)]₃NHSO₄</td>
<td>71</td>
<td>91</td>
</tr>
<tr>
<td>[(n-C₆H₁₃)₃N]HSO₄</td>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>[(n-C₄H₉)₄N]HSO₄</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>[CH₃(n-C₈H₁₇)₃N]₂SO₄</td>
<td>29</td>
<td>24</td>
</tr>
<tr>
<td>[CH₃(n-C₆H₁₃)₃N]Cl</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>(n-C₁₆H₃₃NC₂H₅)Cl</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>[(n-C₄H₉)₄N]Cl</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>[(n-C₁₀H₂₁)₄N]OH</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>[(n-C₆H₁₃)₃N]OH</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>[(n-C₄H₉)₄N]OH</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[CH₃CH₂C₂H₅]₃N]OH</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

¹⁰ 30% H₂O₂, 1-octene, Na₂WO₄·2H₂O, NH₂CH₂PO₃H₂, and PTC in 150:100:2:1:1 molar ratio at 363 K and 1000 rpm stirring.
¹¹ Determined by GC Analysis, based on initial 1-octene concentration.
¹² Reaction run for 2 h.
¹³ Reaction run for 4 h with 4 mL of toluene.
¹⁴ R is a mixture of C₆ to C₁₀ alkyl chains.
¹⁵ 30% H₂O₂, 1-octene, Na₂WO₄·2H₂O, NH₂CH₂PO₃H₂, and PTC in 150:100:2:1:0.5 molar ratio.
¹⁶ H₃PO₄ was used instead of NH₂CH₂PO₃H₂.
¹⁷ N-Hexadecylpyridinium chloride.

attributed to η^2-O$_2$. Additionally, Aubry and coworkers showed that when H$_2$O$_2$ is added to a solution of H$_3$[PW$_{12}$O$_{40}$], the Raman spectra gives rise to three significant bands at 962 cm$^{-1}$, 556 cm$^{-1}$, and 619 cm$^{-1}$ which are assigned to v(W=O), v$_s$(W=O$_2$), and v$_{as}$(W=O$_2$), respectively. These three characterization methods (i.e., UV-vis, NMR, and Raman) all suggest that the active intermediate for epoxidation over H$_3$[PW$_{12}$O$_{40}$] is the same η^2-O$_2$ intermediate proposed by Venturello et al.112 While POMs are active for epoxidation, their homogeneous nature makes catalyst recovery difficult, thereby presenting a clear need to create catalytic systems that are easily recovered and separated from the product stream.

Significant effort has been spent to immobilize POMs onto insoluble solid supports113,335,336 and to create homogeneous systems from which the inactive catalyst precipitates.114 Villa de P et al. showed that the Venturello anion (i.e., [PO$_4$[W(O)(O$_2$)$_2$]$_4$]$^{3-}$) can be ion exchanged onto PW-amberlite (a cationic resin) to create a heterogeneous catalyst (W-POM-Amb) that epoxidizes terpenes with high turnover numbers (>160 turnovers for limonene).335,336 Mechanistic interpretation of epoxidation rates, measured as a function of reactant concentrations, suggested that epoxidation occurs through a Langmuir–Hinshelwood type mechanism. Interestingly, the addition of limonene epoxide reduced epoxidation rates over the W-POM-Amb catalyst (likely due to strong adsorption of the epoxide to the active site), but reactivity was completely recovered after washing with acetone.336 In 2001, Zuwei and coworkers developed a W-POM ([\pi-C$_5$H$_5$NC$_{16}$H$_{33}$]$_3$[PO$_4$(WO$_3$)$_4$]), which activates H$_2$O$_2$ to form a soluble peroxo species that is active for epoxidation of propylene but which spontaneously precipitates after complete H$_2$O$_2$ consumption (Scheme 16).114 This W-POM gave 94% selectivity to PO at high propylene conversions (91%). Importantly, this catalyst could also be coupled with the 2-ethylanthraquinone (EAH) auto-oxidation process (Section 2), which generates H$_2$O$_2$ in situ (from H$_2$ and O$_2$) to be activated for propylene epoxidation. EAH was first reduced by reaction with H$_2$ over a Pd catalyst and O$_2$ was subsequently added to regenerate EAH and form H$_2$O$_2$ as a reagent for epoxidation.114 The authors did not add EAH, Pd, H$_2$, and O$_2$ to the reaction mixture containing propylene and the W-POM, likely because this would result in the hydrogenation of propylene to propane over the Pd catalyst. When these two processes are coupled, the system gave yields of PO as high as 85% with greater than 90% catalyst recovery. IR spectra taken ex situ of the W-POM before reaction recovery revealed a clear absorption peak at 890 cm$^{-1}$ which is assigned to the v$_{as}$(W–O–W) mode, while IR spectra of H$_2$O$_2$-activated W-POM lacked the 890 cm$^{-1}$ feature, but possessed a distinct peak at 840 cm$^{-1}$, which is assigned to v(O–O).114

Many other metals (e.g. Cr,337 Mn,109,338 Ti,339 Bi,340 Fe,341,342 Nb,343 Ni,344,345 Ag346) have been incorporated into POM and POM-based catalytic systems that can be used for epoxidation. Amanchi et al. developed a Bi-substituted sandwich-type POM ([Sn$_2$Bi$_2$(ZnW$_9$O$_{34}$)$_2$]$^{14-}$) that activates H$_2$O$_2$ to form a nucleophilic intermediate that is active for the epoxidation of cyclooctene.340 Notably, these nucleophilic active species oxidize allylic alcohols to form aldehydes or ketones via C–H activation at greater
rates than for the epoxidation of the C=C double bond, which are targeted by the electrophilic intermediates formed on zeolite catalysts and many W-based POMs. The authors proposed the reactive intermediate to be a nucleophilic Bi-peroxo (Bi–O\textsubscript{2}/C\textsubscript{0}) moiety, similar to the W–O\textsubscript{2} intermediates proposed for W-POMs, in order to explain the unexpected inversion of substrate oxidation rates and selectivities in comparison to W-POMs.

Metal substituted POMs are an interesting class of catalysts with a great deal of flexibility that allows the materials and solvents used to be finely tuned in order to increase rates, selectivities, and the success of catalyst recovery. Since the introduction of W-POMs in the late 1980s, POMs have been adapted for the catalytic epoxidation of various cyclic (e.g., substituted cyclohexenes) and bulky (e.g., terpenes) olefins. Despite the research efforts that POMs have garnered, the \textit{ab initio} prediction of novel transition metal substituted POMs for epoxidations has been largely unsuccessful and new POMs are created through an Edisonian approach.340 The development of increasingly selective POMs, where reactivity can be estimated \textit{a priori}, for the activation of \textit{H\textsubscript{2}O\textsubscript{2}} and epoxidation of various olefins remains a challenge and a potentially rewarding area of study for collaborative efforts between computational and experimental researchers in catalysis.

5.3 Metal oxides

Heterogeneous metal oxide catalysts are desirable for use in industrial epoxidation, because they are highly stable and can be easily recovered

\textbf{Scheme 16} A recoverable tungsten-based catalytic system where the activated catalyst is soluble and precipitates out as an insoluble salt when no \textit{H\textsubscript{2}O\textsubscript{2}} is present. Reproduced from X. Zuwei, Z. Ning and L. Kunlan, \textit{Science}, 2001, 292, 1139.
from reactant streams and reused. A variety of supported metal oxides containing (e.g., Ti103,328,347–349, V103,350, Nb103,351–353, Mo354, Ta103,328,355–357 and W358) and mixed-metal oxide (e.g., Al\textsubscript{2}O\textsubscript{3}–ZrO\textsubscript{2}, Al\textsubscript{2}O\textsubscript{3}–TiO\textsubscript{2}, ZrO\textsubscript{2}–TiO\textsubscript{2})359 catalysts have been prepared and studied for olefin epoxidations with H\textsubscript{2}O\textsubscript{2}. Notestein \textit{et al.} developed a calixarene-assisted synthesis method, which involves the formation of bulky calixarene–metal complexes that are grafted onto the surface of SiO\textsubscript{2} and then subjected to high-temperature oxidative treatment (723–823 K in flowing dry air) to create supported metal oxide catalysts with isolated metal centers at a range of metal loadings (0.1–3 wt%).103,108 This method has been used recently by Notestein \textit{et al.} to investigate periodic trends among group IV (\textit{i.e.}, Ti, Zr, Hf) and V (\textit{i.e.}, V, Nb, Ta) metals for the epoxidation of cyclohexene and styrene.103 Initial turnover rates correlate linearly with increasing Pauling electronegativity of the transition metal used in epoxidation. Interestingly, site isolated Nb–SiO\textsubscript{2} catalysts prepared by the calixarene grafting method give particularly high cyclohexene epoxidation rates (~2.4 mol\textsubscript{epoxide} mol\textsubscript{Nb}-1 min-1) and outperformed Ti–SiO\textsubscript{2}, which was long thought to be the optimal metal for epoxidation reactions based on the success of TS-1 in the HPPO process.103

Supported Ta catalysts have been used for epoxidations and in recent years, mechanistic interpretation of rate measurements and spectroscopic data have provided evidence for specific active intermediates. Morlanes \textit{et al.} used a calixarene-assisted grafting method to make a site-isolated Ta catalyst (Ta–SiO\textsubscript{2}), on which they determined the kinetics and mechanism for cyclooctene epoxidation with H\textsubscript{2}O\textsubscript{2} by measuring initial rates in a batch reactor as a function of reactant concentrations (\textit{i.e.}, H\textsubscript{2}O\textsubscript{2} and cyclooctene).328 They determined that the epoxidation of cyclooctene occurs through an Eley–Rideal mechanism, in which H\textsubscript{2}O\textsubscript{2} reversibly adsorbs to a Ta active site and forms a complex proposed to be quasi-equilibrated with the formation of the reactive intermediate (Ta–OOH*). Subsequently, Ta–OOH* reacts with cyclooctene in solution to form cyclooctene oxide.328 H\textsubscript{2}O\textsubscript{2} decomposition was proposed to occur by reaction of a free H\textsubscript{2}O\textsubscript{2} molecule with Ta–OOH*, and notably, a calixarene “capping” agent was bound to the Ta active site to partially block the open coordination site and decrease H\textsubscript{2}O\textsubscript{2} decomposition by 50%.328 This likely succeeds because the calixarene capping agent is bulky and non-polar, which creates an environment that preferentially solvates and stabilizes cyclooctene, rather than H\textsubscript{2}O\textsubscript{2}, in the immediate vicinity of Ta–OOH*. Tilley and coworkers independently developed a synthesis procedure that uses siloxane-assisted grafting of Ta atoms onto SBA-15 (Ta-SBA-15) to produce a catalyst with similar function.356 UV-vis spectra show that the reaction of H\textsubscript{2}O\textsubscript{2} with Ta-SBA-15 forms an absorption feature at 260 nm, which is attributed to the ligand-to-metal charge transfer (LMCT) of an –OOH appendage to the Ta metal center.356 It should be noted that this UV-vis absorbance feature is similar to the feature observed by Zecchina,307 for H\textsubscript{2}O\textsubscript{2} activation over TS-1.

Supported Nb oxide catalysts have also attracted attention recently for use as epoxidation catalysts. Kholdeeva and coworkers used an evaporation-induced self-assembly (EISA) method to prepare hydrothermally stable
mesoporous niobium–silicates (Nb–SiO$_2$), which epoxidize bulky cyclic olefins (e.g., cyclooctene, styrene, limonene) with moderate-to-high selectivities (50–99%).352 Interestingly, Nb–SiO$_2$ epoxidizes electron deficient substrates (e.g., substituted quinones) with high selectivities (>68%). This is in contrast to TS-1, which was observed to have increased epoxidation rates for electron-rich alkenes, due to the electrophilicity of the Ti–OOH* reactive intermediate.102 Additionally, the identity of the Nb precursor used in the EISA method has a significant effect on the dispersion of Nb in the final catalyst. The authors found that the catalyst yielded mostly site-isolated Nb species, as determined by diffuse reflectance UV-vis when using ammonium niobate oxalate as the precursor.352 When niobium(v) ethoxide was used, the catalyst consisted primarily of dimers and small oligomers of Nb-oxide domains. Site-isolated Nb catalysts are more effective for the formation of epoxides sensitive to secondary decomposition (e.g., cyclooctene and cyclohexene), likely because oligomeric Nb oxide provides Lewis acid sites in the immediate post-epoxidation vicinity for the activation of the oxirane ring for secondary reactions (e.g., hydrolysis to form a diol). However, no appreciable differences in reaction rates or epoxide selectivities were seen between site-isolated and oligomeric Nb catalysts for the formation of stable epoxides (e.g., limonene epoxide).352 Somma et al. developed a niobia–silica aerogel mixed oxide catalyst that is active for the epoxidation of unsubstituted olefins (e.g., cyclooctene) and substituted allylic alcohols (e.g., geraniol and trans-2-pentene-1-ol) by co-precipitation of a niobium alkoxide precursor (NbOIp$_3$) with tetramethyl orthosilicate.104,353 The authors found that increasing the loading of Nb (1 to 6 wt%) decreased the selectivity of epoxide formation (i.e., cyclooctene oxide selectivity from 100 to ~10%) due to increased rates of epoxide solvolysis to produce 1,2-cyclooctadiol. This is similar to the observations made by Kholdeeva,352 where oligomeric Nb-oxide sites would give increased rates of diol formation post epoxidation. Flaherty et al. have synthesized a Nb-incorporated *BEA zeolite (Nb-BEA) to study cyclohexene epoxidation with spectroscopic evidence for the formation of the reactive intermediate Nb-(O$_2$)$^-$.329 Upon contact with H$_2$O$_2$, a broad absorbance feature at 335 nm is deconvoluted to reveal two overlapping bands at 330 and 370 nm, which are assigned to the LMCT of an –O$_2$$^-$ and –OOH moieties to a Nb metal center. Reaction of H$_2$O$_2$-activated Nb-BEA with ethylene attenuates the broad absorbance feature, and time resolution of the two components combined with kinetic parameter optimization reveals that the Nb-superoxide species (i.e., Nb-(O$_2$)$^-2$ is responsible for olefin epoxidation and is potentially the reactive intermediate on related Nb-oxide catalysts.

Metal oxide catalysts are ubiquitous and desirable catalysts with high hydrothermal stability and low costs that can be easily adopted by industry for large-scale epoxidation reactions with H$_2$O$_2$. A large number of transition metal oxide catalysts have been investigated for the epoxidation of various olefins, however, the synthesis procedure has a significant effect on the selective use of H$_2$O$_2$ and the prevention of secondary reactions from occurring (resulting in lower epoxide yields).
As such, there is still much work to be done to understand the structure–function relationships between catalysts synthesis and morphology and how these physical properties translate to the efficacy of an epoxidation catalyst.

5.4 Homogeneous coordination compounds

A large body of literature describes olefin epoxidations using homogeneous transition metal catalysts and H$_2$O$_2$ as an oxidant. Several excellent reviews discuss different aspects of this field of work in great detail,85,86,92,360 therefore, we introduce a broad perspective on the historical developments and recent advances of three commercially available classes of homogeneous epoxidation catalysts: methyltrioxorhenium, metalloporphyrins, and Schiff-base complexes.

5.4.1 Methyltrioxorhenium. Methyltrioxorhenium (MTO) has garnered much attention due to its high catalytic activity for epoxidation reactions even at low temperatures (263–343 K). Herrmann et al. were among the first to report MTO as an effective epoxidation catalyst for the epoxidation of substituted olefins (e.g., cis-2,3-pentene, β-pinene, allyl alcohol, and propene) with fairly good yields (90%, 50%, 90%, and 50%, respectively).361,362 17O NMR performed by these authors suggest that two H$_2$O$_2$ molecules are needed to initially form the reactive species from MTO (Scheme 17). Infrared spectra of the complex formed by reaction of H$_2$O$_2$ with MTO show an absorption peak at 872 cm$^{-1}$, which is attributed to an η^2 Re-O$_2$ intermediate that is thought to be active for olefin epoxidation. After activation of H$_2$O$_2$, Herrmann was
able to chelate the intermediate with diglyme and isolate crystals, which were then used to show the existence of two η^2 Re-O$_2$ moieties on the activated material.362 This Re(O$_2$)$_2$ intermediate is relatively stable and does not decompose spontaneously near 300 K, however, upon heating it becomes explosive.361 In 2015, Goldsmith et al. combined computational and experimental evidence to show that an H$_2$O-mediated hydrogen bonding network accelerates the reaction between H$_2$O$_2$ and MTO to form the active Re(O$_2$)$_2$ complex (Scheme 18).363 The authors conclude that small amounts of H$_2$O accelerate the formation of Re(O$_2$)$_2$, which also increases the rate of epoxidation. However, increasingly high H$_2$O concentrations induce significant rates for hydration of the epoxides to form diols.

Although MTO gives high rates and selectivities for the epoxidation of various olefins, H$_2$O coordinated to MTO tends to be a moderately strong Brønsted acid (pK_a ~ 3.6), which can activate and hydrate epoxides (i.e., form diols) and reduce product yields.361 Consequently, researchers have invested considerable efforts to develop catalytic systems involving MTO that are not acidic. For example, Rudolph and Sharpless developed a pyridine-assisted MTO catalytic system that selectively epoxidizes a number of linear (e.g., 1-decene, cis- and trans-4-octene), cyclic (e.g., cyclohexene, norbornene, cyclooctene), and conjugated (e.g., 1-phenylcyclohexene, indene, 1,2-dihydronaphthalene) alkenes with selectivities and yields greater than 98% and 92%, respectively.364 Addition of the pyridine is believed to have two benefits. First, the coordination of pyridine to MTO aids in the reaction between H$_2$O$_2$ and MTO to form the active intermediate (similar to the conclusions from Goldsmith et al.363). Second, pyridine acts as a H$^+$ scavenger and prevents H$^+$ donors from activating the epoxide to form diol byproducts, and thus increases reaction rates and yields. Since the discovery of the synergistic role that pyridine plays in olefin epoxidations with MTO, many other catalytic systems have been devised that utilize 3-cyano pyridine,365 3-methyl pyrazole,366 and urea–H$_2$O$_2$ adducts367,368 to accelerate the activation of H$_2$O$_2$ over MTO and neutralize the solution pH to increase epoxide yields. However, harsh, undesirable organic solvents (e.g., dichloromethane and chloroform)366,368

![Scheme 18](image_url) Proposed cyclic transition state for H$_2$O-assisted the activation of H$_2$O$_2$ over MTO. Reproduced from B. R. Goldsmith, T. Hwang, S. Seritan, B. Peters and S. L. Scott, Rate-Enhancing Roles of Water Molecules in Methyltrioxorhenium-Catalyzed Olefin Epoxidation by Hydrogen Peroxide, J. Am. Chem. Soc., 2015, 137, 9604. Copyright 2015 American Chemical Society.
are needed to solubilize both MTO and these additives for improved catalytic performance. As a result, MTO has not been adopted on industrial scales, but remains a focus of fundamental studies for epoxidation reactions.

5.4.2 Metalloporphyrins. Groves et al. were among the first to demonstrate the epoxidation of an olefin (in this case, norbornene) using a high-valent Fe(IV) porphyrin (Fe(IV)-POR) complex, which was inspired by biology’s cytochrome P-450 and peroxidase.\(^{369}\) \(^{1}\)H NMR, \(^{57}\)Fe Mössbauer, and EPR spectroscopies were used to identify the active intermediate that formed upon reaction of Fe(IV)-POR with \(m\)-chloroperoxybenzoic acid (\(m\)-CPBA), a Fe(IV)-oxo cation (i.e., Fe=O\(^+\)).\(^{369}\) This intermediate structurally resembles the Fe(IV)-oxo intermediate of P-450, which contains a heme (i.e. porphyrin) complex that is active for hydrocarbon oxidation and which forms by a series of \(\text{e}^-\) transfer steps to an \(\text{O}_2\) molecule that initially binds to form a \(\eta^1\) Fe(IV)-OO complex.\(^{370}\) Groves soon demonstrated that the presence of pro-chiral addendums (e.g., anilide, Scheme 19) on the porphyrin ring allows the Fe(IV)-POR complex to perform the enantioselective oxidation of styrene.\(^{371}\) The aniline functional groups are rotationally hindered, such that olefins prefer specific binding configurations. Anilide groups also create identical active sites on both sides of the Fe(IV)-POR, which give high purities of product with enhanced enantioselectivities. Research groups further developed this theme by creating “basket handled” aniline-modified Fe(IV)-POR via the connection of two anilide appendages by an aromatic tether.\(^{372}\) Mansuy et al. found that a dual “basket handled” Fe(IV)-POR reversed the enantioselectivity (15%...
enantiomeric excess (ee) for (S) enantiomer) observed with Groves’ chiral Fe(IV)–POR371 to instead give selectivity for the opposite enantiomer (i.e., (R)-p-chlorostyrene oxide with 50% ee from p-chlorostyrene).372 These early Fe(IV)–POR catalysts369,371,372 required organic oxidants (e.g., mCPBA and iodosylbenzene) and solvents (e.g., DCM, toluene), and researchers did not report the use of H2O2, perhaps because the low solubility of H2O2 in these solvents would limit its efficacy.

In 1993, Traylor and coworkers developed a new Fe(III) porphyrin (Fe(III)–POR) that catalyzes the epoxidation of cyclic olefins (e.g., cyclohexene, cyclooctene, and norbornene) with H2O2 with fairly high yields (i.e., 83%, 100%, 64%, respectively).99 Importantly, Traylor determined that this chemistry involves the heterolytic cleavage of an Fe–OOH* intermediate to form an active Fe–oxene (Fe1=O), as opposed to a homolytic O–O bond rupture that forms hydroxyl radicals and additional Fenton-reaction byproducts (Scheme 20).99 Cis-stilbene was used as a molecular probe of the relative contributions of the heterolytic and homolytic activation pathways, because the ratio of cis- and trans-epoxide products reports directly on the relative rates of Fe1=O and radical mediated epoxidation reactions, respectively.99 The authors showed that only cis-stilbene oxide formed and that Fe1=O was the predominant active species.99 If epoxidation were to occur through a radical-based mechanism, trans-stilbene oxide would be the predominant product because radical-mediated epoxidations occur through a transition state with free rotation about the C–C bond, which would eliminate the eclipsing interactions between the two phenyl groups that is observed for cis-stilbene oxide.302 Additionally, the presence of electron-donating substituted (i.e., perfluorinated phenyl groups) on the porphyrin increased epoxidation rates of cyclooctene more than 50-fold at 298 K. These results suggest that Fe1=O likely forms as a result of the

![Scheme 20](image)

Scheme 20 Homolytic (top) and heterolytic (bottom) cleavage of the O–O bond in M–OOH. Reproduced from B. S. Lane and K. Burgess, Metal-Catalyzed Epoxidations of Alkenes with Hydrogen Peroxide, Chem. Rev., 2003, 103, 2457. Copyright 2003 American Chemical Society.
significant charge transfer from the electron-rich porphyrin rings (when tetra-substituted with perfluorinated phenyl rings) to the π^* of the O_2 and helps to cleave the O–O bond in the Fe–OOH species formed upon H_2O_2 activation.99,373–375 Notably, this situation differs from that for TS-1 and related heterogeneous materials, where Ti-atoms apparently lack sufficient charge density to cleave the O–O bond of Ti–OOH*. Similarly, many heterogeneous catalysts are believed to utilize peroxy (M–O$_2$*) and hydroperoxo (M–OOH*) intermediates for the epoxidation of olefins.303,307 In the subsequent decades, multiple modifications have increased the epoxidation rates and selectivities of Fe–POR catalysts. For example, Vinhado \textit{et al.} immobilized pentafluorophenyl Fe(III)–POR complexes onto bis-functionalized silica using covalently bonded imidazolium and sulfonyle tethers.376 These Fe(III)–POR complexes gave greater cyclooctene epoxidation yields (\textit{i.e.}, up to 50\%) than the homogeneous catalyst with no additives (up to 38\%), likely due to the promotion of heterolytic cleavage of the O–O bond in Fe–OOH to form Fe=O.

Other approaches include the substitution of a tridentate or tetradentate carbazole ligand for the porphyrin core over Fe-based catalysts (Scheme 21).116,377 Niwa \textit{et al.} developed a carbazole-substituted Fe(III) complex (Fe(III)–CAR) that epoxidizes various pro-chiral (\textit{e.g.}, substituted stilbenes) and electron-poor (\textit{e.g.}, unsaturated esters) olefins with PhIO as the oxidant.377 Fe(III)–CAR is isoelectronic to the Fe(III)–POR, and epoxidizes conjugated planar trans-olefins to selectively form the (S,S) epoxide with up to 97\% ee. Recently, Dai \textit{et al.} have created a tetradentate diamino oxazoline ligand that when bound to Fe(III), epoxidizes α,β-unsaturated ketones with high yields (up to 94\%) and high enantioselectivities (up to 99\% ee) with m-CPBA.116 This Fe(III) catalyst was shown to epoxidize more than 23 electron-poor olefins with greater than 80\% ee and typical yields of ~80\%. It should be noted, that the reported selectivity trends run counter to those for Fe(III)–PORs, which prefer to epoxidize electron-rich olefins, due to the electron-poor nature of the Fe$^\equiv$O intermediate.99 An explanation of why these carbazole–Fe(III) catalysts are active towards electron-poor olefin epoxidation is not immediately apparent or explained by the authors.377 We speculate that these trends are caused by the lack of aromaticity (\textit{i.e.}, the porphyrin core

\begin{scheme}
\centering
\includegraphics[width=\textwidth]{Scheme21.png}
\caption{Fe–POR catalysts and the Fe–POR-inspired carbazole derivatives.}
\end{scheme}
is withdrawing electron density from the Fe atom) and substitution of the
oxazoline (i.e., electron-rich) ligand shifts electron density onto the Fe
center, which makes the active intermediate formed more electron rich
and increases selectively towards the epoxidation of electron-poor ole-
fins. Despite the recent research efforts put into carbazole-derived Fe
catalysts and their rather unique selectivity patterns, these catalysts
have yet to be adapted in ways that would allow them to use H₂O₂ for
epoxidation reactions, which would be an important next step for
carbazole-based catalysts.

Mn-based porphyrin (Mn–POR) catalysts activate H₂O₂ for the epoxi-
dation of various olefins (e.g., cyclooctene, cyclohexene, and 1-nonene)
with complete conversion (~100%) and high selectivities for epoxide
formation (greater than 90%) when combined with imidazole addi-
tives.³⁷⁸,³⁷⁹ Imidazole coordinates and donates electron-density to the
Mn metal center, which accelerates the activation of H₂O₂ for epoxida-
tions. For example, imidazole is clearly needed to facilitate the epoxi-
dation of styrene because under identical reaction conditions and times in
the absence of imidazole, only trace amounts of styrene oxide form (less
than 2.5% yield).³⁷⁸ Quici and coworkers developed a Mn–POR catalyst,
which contains a carboxylic acid and an imidazole tether, that epoxidizes
cyclooctene with turnover rates greater than 500 min⁻¹.³⁸⁰ The imidazole
tether coordinates and donates electron density to the Mn metal center
and increases the rate of H₂O₂ activation, while the carboxylic acid is
believed to coordinate to the opposite face of the complex and assist in
the activation of H₂O₂ through a Mn–OOH intermediate.³⁸¹ EPR spectroscopy shows that the reaction of Mn–POR with m-CPBA forms
a broad resonance feature at g 4.5, which is consistent with the formation
of Mn(Ⅴ)=O species and also similar to the intermediates proposed for
Fe–POR catalysts.³⁸² Dai et al. have developed a Mn–POR-inspired dia-
mino oxazoline-ligated Mn complex (MnLn) that epoxidizes a variety of
conjugated and cyclic olefins (e.g., indene, 1-phenylpropene, stilbene,
etc.) with a wide range of yields (17–94%) and fairly good enantioselec-
tivities (51–99% ee).³⁸³ The addition of carboxylic acids (e.g., propanoic
acid, carboxycyclohexane, heptanoic acid) increases the rate and the
enantioselectivity of the reaction, because the diamino oxazoline ligand
synergistically binds with the carboxylic acid and promotes the activation
of H₂O₂ and epoxidation of an olefin (Scheme 22). Unfortunately, there
are few publications that give mechanistic interpretation or spectroscopic
evidence for the bond structure or identity of specific reactive inter-
mediate over MnLn catalysts, which hinders the rational development of
novel ligands to improve rates and selectivities.

Mn–PORs have been immobilized onto solid supports to create hybrid
heterogeneous catalysts that are easily removed from the product stream
for catalyst recovery. Rebelo et al. synthesized a Mn–POR that is cova-
rently tethered to an amine-functionalized silica gel that retained much
of its reactivity towards cyclooctene epoxidation \(i.e., 97\% \) for untethered catalyst, \(88\% \) for immobilized).\(^\text{384}\) Unfortunately, the conversion of cyclooctene epoxidation decreased to \(51\% \) in identical reaction conditions upon recovery and reuse, which is likely due to leaching of the catalyst by oxidative cleavage of the amine tethers by \(\text{H}_2\text{O}_2 \). De Paula and coworkers immobilized Mn–POR catalysts on both silica gel (Mn–POR–SG) and modified resins (Mn–POR–MR) to investigate the differences in stability and reactivity that the identity of the support has on olefin epoxidation with \(\text{H}_2\text{O}_2 \).\(^\text{385}\) For both solid supports, high yields were obtained for the epoxidation of cyclooctene (greater than \(99\% \)). However, upon catalyst recovery, the conversion of cyclooctene over Mn–POR–SG dropped to \(4.9\% \), while the reactivity for Mn–POR–MR was maintained over \(4 \) reuse cycles.

(97.4% yield). The authors attributed the greater stability of Mn–POR–MR, in comparison to Mn–POR–SG, to orbital stabilization and increased electron exchange between the resin support to the Mn–POR complex (i.e., electron donation from the modified resin into the antibonding orbitals of Mn-POR, similar to electron back donation). Despite some success, efforts to immobilize homogeneous oxidation catalysts onto functionalized silica gels generally result in catalytic systems with limited lifetimes due to the inevitable oxidation of organic tethers.

5.4.3 Schiff-base complexes. In 1990, Jacobsen and coworkers reported one of the first Mn–salen complexes that was active for the epoxidation of several olefins (e.g., 1-methyl cyclohexene, styrene, 2-phenyl propene, *trans*-stilbene) with a wide range of yields (36–93%) and enantioselectivities (20–93% ee) using iodosylmesitylene as the oxidant. The enantioselectivity of epoxidation reactions on Mn–salen complexes reflects the substitution at the diamino bridge on the salen ligand as it controls the approach of olefins to the activated Mn–metal center. Berkessel et al. modified the salen ligand to possess an internally tethered imidazole group (Scheme 23) that coordinates to the Mn metal atom (Mn–SalenIM) and helps to epoxidize styrene with styrene oxide yields of 100% using 1 wt% H$_2$O$_2$ solutions. The imidazole group coordinates to the Mn center and provides additional electron density, which aids in the activation of H$_2$O$_2$ in ways similar to those seen for Mn–POR catalysts. This additional electron density is critical because H$_2$O$_2$ is more difficult to activate than iodosylmesitylene. These results have motivated a number of studies that utilize electron-rich additives (e.g., *N*-methylmorpholine *N*-oxide or ammonium acetate) in order to facilitate the activation of H$_2$O$_2$ via heterolytic O–O bond cleavage of Mn–OOH intermediates to form the active Mn=O species.

The original Mn–salen compounds inspired the recent development of diamino–pyridine (dpb) complexes, which are a new class of catalysts for the epoxidation of olefins with H$_2$O$_2$. Miao et al. developed a Mn–dbp complex that efficiently epoxidizes cyclic (e.g., cyclooctene, cyclohexene, cycloheptene) and linear (e.g., 1-octene, *trans*-2-heptene, and *cis*-2-heptene) alkenes in relatively high yields (45 to 92%) when H$_2$SO$_4$ is used as a co-catalyst. A Mn–OOH intermediate forms upon activation with H$_2$O$_2$.

![Scheme 23](image)

Scheme 23 Jacobsen’s Mn–Salen and Berkessel’s Mn–SalenIM complexes.
and subsequently undergoes acid-catalyzed heterolysis to form a Mn(\(V\))=O species that is active for epoxidation. As such, the presence of protons (H\(^+\)) in solution is necessary for the activation of H\(_2\)O\(_2\) with these catalysts. Acid-catalyzed hydration of the epoxides to form the corresponding diols did not occur, because the reaction was conducted at 253 K, where rates of decomposition are slow. Additionally, over 20 olefins (linear, cyclic, conjugated, electron rich, and electron poor) were shown to undergo epoxidation with reasonable yields (45–100%) and excellent enantioselectivities (60–98% ee).\(^{392}\) Recently, Cusso\' et al. synthesized an Fe(dbp) complex that efficiently epoxidizes 36 different cyclic enones with up to 99% ee using H\(_2\)O\(_2\).\(^{393}\) EPR spectra reveal that carboxylic acids (i.e., typical additives) coordinate to the Fe–metal center and assist in the heterolytic cleavage of Fe–OOH to generate an electrophilic oxidant (i.e., Fe(\(V\))=O, Scheme 24).\(^{394}\) Despite the recent interested in the dbp-based catalysts, there are few reports that show their immobilization onto solid supports in order to increase their reusability.

In general, homogeneous catalysts tend to be the most reactive and selective catalysts for olefin epoxidation. However, they typically require the use of organic solvents to increase the solubility of the catalysts and co-reactants and additives (e.g., imidazole or carboxylic acids) to activate H\(_2\)O\(_2\). As a result, these catalysts have not been widely adopted by industry for the production of epoxides at large scales. Such catalysts have potential for use in the production of fine chemicals, if these complexes can be effectively constrained or immobilized to solid supports without significant loss of reactivity.

5.5 Detection of active intermediates in epoxidation catalysts

The identity of the reactive intermediate formed by activating H$_2$O$_2$ influences the selectivity of the reaction towards specific C–C bonds and also the selectivity towards different competing pathways (e.g., allylic hydrogen abstraction, complete oxidation, etc.). Table 7 summarizes the four most commonly discussed reactive intermediates formed upon H$_2$O$_2$ activation (i.e., hydroperoxo (M–OOH), superoxo (M–O$_2^-$), perrxo (M–O$_2^{2-}$), and oxo (M=O)), the spectroscopic methods used to detect their presence, and the characteristic features indicative of each type of intermediate. Hydroperoxo species (e.g., Ti–OOH) have been identified on TS-1 after activation of H$_2$O$_2$ using a combination of UV-vis, IR, Raman, and EXAFS. These Ti–OOH species were found to have epoxidation rates that increased with the electron-richness of C–C bonds (e.g., Table 5, allyl chloride > allyl alcohol > 1-pentene), which is indicative of the electrophilic nature of the M–OOH moiety. Superoxide species (e.g., Nb–(O$_2$)$^-$) have been detected as a reactive intermediate by our group using in situ UV-vis and IR spectroscopy for cyclohexene epoxidation. Superoxide species likely form with the concomitant cleavage of a M–O bond and are in a dynamic equilibrium with M–OOH.

Table 7: Experimental identification of the active intermediate in olefin epoxidation catalysts.

<table>
<thead>
<tr>
<th>Species</th>
<th>Technique</th>
<th>Characteristic features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroperoxo (M–OOH)</td>
<td>UV-vis</td>
<td>250 nm (Ta–OOH)</td>
</tr>
<tr>
<td></td>
<td>Infrared</td>
<td>837 cm$^{-1}$ (ν(O–O), Ti–OOH)</td>
</tr>
<tr>
<td></td>
<td>Raman</td>
<td>840–843 cm$^{-1}$ (ν(O–O), Ti–OOH)</td>
</tr>
<tr>
<td></td>
<td>EXAFS</td>
<td>2.01 Å (Ti–OOH)</td>
</tr>
<tr>
<td>Superoxo (M–O$_2^-$)</td>
<td>UV-vis</td>
<td>330 nm (Nb–(O$_2$)$^-$)</td>
</tr>
<tr>
<td></td>
<td>Infrared</td>
<td>1024 cm$^{-1}$ (ν(O–O), Nb–(O$_2$)$^-$)</td>
</tr>
<tr>
<td></td>
<td>EPR</td>
<td>330 mT (Ti–(O$_2$))</td>
</tr>
<tr>
<td>Peroxo (M–O$_2^{2-}$)</td>
<td>UV-vis</td>
<td>385 nm (Ti–OOH)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>370 nm (Nb–(O$_2$)$^{2-}$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>252 nm ([PO$_4$][W(O)(O$_2$)$_2$]$_3$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>320 nm (CH$_3$ReO$_2$(η$_5$–O$_2$))</td>
</tr>
<tr>
<td></td>
<td>Infrared</td>
<td>840 cm$^{-1}$ (ν(O–O), [PO$_4$][W(O)(O$_2$)$_2$]$_3$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>618 cm$^{-1}$ (ν(O–O), Ti–(O$_2$))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>912 cm$^{-1}$ (ν(O–O), Nb–(O$_2$)$^-$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>872 cm$^{-1}$ (ν(O–O), CH$_3$ReO$_2$(η$_5$–O$_2$))</td>
</tr>
<tr>
<td></td>
<td>Raman</td>
<td>556 cm$^{-1}$ (ν$_v$(W(O$_2$)))</td>
</tr>
<tr>
<td></td>
<td>NMR</td>
<td>619 cm$^{-1}$ (ν$_v$(W(O$_2$)))</td>
</tr>
<tr>
<td></td>
<td>NMR</td>
<td>–500 ppm (W, W(O$_2$))</td>
</tr>
<tr>
<td></td>
<td>Crystal Structures: ([PO$_4$][W(O)(O$_2$)$_2$]$_3$)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(CH$_3$ReO$_2$(η$_5$–O$_2$)·diglyme)</td>
</tr>
<tr>
<td>Oxo (M=O)</td>
<td>UV-vis</td>
<td>422 nm ([Cl$_2$TPP]Mn(O))</td>
</tr>
<tr>
<td></td>
<td>Infrared</td>
<td>712 cm$^{-1}$ (ν(Mn=O))</td>
</tr>
<tr>
<td></td>
<td>EPR</td>
<td>$g = 4.5$ (Mn=O)</td>
</tr>
<tr>
<td></td>
<td>Mössbauer</td>
<td>δ = 0.08 mm s$^{-1}$ (Fe=O)</td>
</tr>
<tr>
<td></td>
<td>Mass spectrometry</td>
<td>869 m/z [parent, Mn(TMP)(O)(H$_2$O)]</td>
</tr>
</tbody>
</table>
species prior to epoxidation. Peroxo species (i.e., $\text{M}-(\text{O}_2)^{2-}$) have been detected by UV-vis, IR, Raman, NMR, and X-ray crystallography and are commonly invoked as the active intermediate for olefin epoxidation on group VI-based polyoxometalates (i.e., W- and Mo-POMS) and methyltrioxorhenium (MTO). These M-(O$_2$)$^{2-}$ species are easily paired with phase-transfer catalysts (PTCs) to devise clever bi-phasic catalytic systems that allow for the recovery and reuse of these expensive and traditionally homogeneous catalysts. Metal-bound oxo species (i.e., $\text{M}=\text{O}$) have been identified using UV-vis, IR, EPR, Mössbauer, and mass spectrometry and are generally believed to be the active intermediate for oxidations over Fe- and Mn-porphyrin and Schiff-base complexes following the heterolytic cleavage of an O–O bond. The addition of electron-donating additives (e.g., imidazole) has been shown to accelerate the heterolytic cleavage of the O–O bond, which lends itself to the design of novel catalytic systems that employ electron-donating substituents covalently linked to a solid support to tether these catalysts to increase their recyclability and be incorporated into flow-chemistry processes. Thus, the design of more active, selective, and reusable catalysts for epoxidations hinges on the understanding of how the olefin of interest coordinates and reacts with the active intermediate to identify the best category of catalyst to begin with (e.g., type of catalyst, metal identity, coordinating structure). Only once the active intermediate and its general reactivity is known, can systems be devised to better stabilize this reactive intermediate and increase its propensity to react with specific olefins under tunable reaction conditions.

6 Oxidation schemes that use H$_2$O$_2$ formed in situ

Few epoxidation catalysts can utilize O$_2$ as the oxidant for olefin epoxidation (with the notable exception of ethylene oxide production over supported Ag catalysts). Concurrently, most industrially practiced epoxidation reactions achieve high site time yields by being practiced at high temperature at the gaseous interface with heterogeneous catalysts, which complicate the efficient use of H$_2$O$_2$. Liquid H$_2$O$_2$ cannot be easily fed into the inlet of the reactors for these processes without significant decomposition, therefore, a number of research groups (both industrial and academic) have made extensive efforts to create catalytic systems that generate H$_2$O$_2$ in situ using bifunctional systems that combine metal catalysts (e.g., PtPd bimetallics, Pd, or Au) for H$_2$O$_2$ formation and metal oxide catalysts (e.g., TS-1, TiO$_2$) for olefin epoxidation.

6.1 Bimetallic platinum and palladium on TS-1
The discovery of Pd as an efficient direct synthesis (H$_2$ + O$_2$$\rightarrowH_2O_2$, Section 3) catalyst prompted its incorporation into TS-1 (a well-known catalyst for epoxidations, Section 5.1) to create a catalytic system that utilizes H$_2$ and O$_2$ to form and use an active oxidant in situ. In the late 1990s, Meier and Hölderich reported the synthesis and use of TS-1 containing PtPd bimetallic clusters (PdPt/TS-1) to epoxidize propylene to PO.
(12% yield, 46% PO selectivity) using reactant streams of propylene, H₂, and O₂. The PdPt/TS-1 catalyst (1 wt% Pd, 0.1 wt% Pt) was prepared through the incipient wetness impregnation of commercially available TS-1, followed by high-temperature oxidative and reductive treatments (423 K) with the intent to grow the PdPt clusters and reduce the resulting clusters to a metallic state. The PtPd clusters produce H₂O₂ in situ via direct synthesis from H₂ and O₂ (7 bar H₂, 10 bar O₂, aqueous methanol solvent, 316 K), while framework Ti-atoms of TS-1 utilize the H₂O₂ to epoxidize the propylene charged into the batch reactor.

Unfortunately, the use of PtPd/TS-1 forms a variety of products and the typical PO selectivity is low (i.e., <20% with respect to propylene consumption). Studies by Baiker and coworkers showed that similar PtPd/TS-1 catalysts produce a slate of light oxygenated products including PO, acetone, acrolein, acrylic acid, and methyl formate upon reaction of propylene with H₂O₂ in aqueous methanol. The catalyst initially forms PO with a selectivity of 99% at 3.5% conversion, and methyl formate is the major by-product and forms by the oxidation of the methanol solvent to formic acid, which undergoes subsequent esterification reactions. PO formation rates increase by 20% (2.8 mmol PO h⁻¹ to 3.5 mmol PO h⁻¹) when supercritical CO₂ (120 bar) was substituted for the N₂ diluent used with the H₂ and O₂ gas mixtures (to avoid explosive mixtures, Section 3). The increased rates were attributed to increased rates of mass transfer to the catalyst surface, but the non-polar supercritical CO₂ may also preferentially stabilize a critical intermediate in the catalytic cycle. A number of light oxygenate byproducts form by secondary decomposition and oxidation reactions of PO, and must lead to significant yield losses at higher conversions. The decreasing yields of PO formation (at propylene conversions greater than 3.5%) are attributed to Pt coordinating and activating methanol, which then reacts to form methyl formate (the most abundant side product). Additionally, Pt is known to activate O₂ and various alcohols (e.g., methanol) for aerobic oxidation processes and likely reacts with methanol to form surface methoxide species which then react with propylene and PO to form the products observed. Unfortunately, protic solvents (i.e., water, alcohols) are needed for the direct synthesis of H₂O₂, so solvent oxidation is likely to be an issue for Pt-containing catalytic systems that produce H₂O₂ in situ for propylene epoxidation. Beckman studied the effect of adding ammonium acetate and other inhibitors (i.e., pH buffers and acid titrants) to the aqueous methanol solvent to neutralize defect sites (i.e., solid-acid sites) on TS-1 that catalyze hydration and decomposition of PO. The addition of ammonium acetate significantly increased PO yields from 9 to 24% and PO selectivities from 22 to 82%, which demonstrated the effectiveness of this approach.

PtPd/TS-1 catalysts are one system with the potential to utilize H₂ and O₂ reactants as a source for producing H₂O₂ in situ for the epoxidation of olefins. However, defect sites in the TS-1 and the minority Pt site on the metal clusters catalyze a variety of side reactions that reduce the yields of epoxides significantly. The reaction conditions (i.e., solvent choice, use of additives) will need to be optimized in order to increase the conversion
of propylene and the yields and selectivities for PO formation. The complexity of these systems may provide such opportunities, yet developing stable versions of these catalysts, especially in the presence of complex solvents, remains a challenge.

6.2 Gold on TS-1 and TiO$_2$

In the late 1990s, Haruta et al. reported the selective epoxidation of propylene to PO with reactant mixtures of H$_2$ and O$_2$ over Au–TiO$_2$ (Fig. 16). Au and TiO$_2$ do not catalyze the formation of PO or H$_2$O$_2$ independently, which suggests that unique reactivity of the Au–TiO$_2$ catalyst arises from a synergistic interaction between the Au clusters and the TiO$_2$ surface. The reaction between O$_2^*$ and H atoms is thought to occur at the exposed boundaries between Au clusters and the TiO$_2$ support, where Au and Ti atoms cooperatively bind O$_2$ to create a Au–O$_2$–Ti intermediate that forms an activated Ti–OOH* species following reduction. In this pivotal paper, Haruta reported greater than 90% selectivity for the formation of PO from propylene at 1–2% conversion of propylene. However, the selectivity to PO decreases sharply when the loading of Au is lowered below 0.2 wt%. The authors hypothesized that at low weight loadings, the Au clusters become flat (as opposed to hemispherical in topology), and thus possesses reactivity similar to Pt (a known hydrogenation catalyst). Such a comparison seems to be based primarily on chemical intuition and does not include a fundamental explanation for this change in reactivity.

Since the initial reporting of the Au–TiO$_2$ epoxidation catalyst, there have been numerous efforts made to create alternative Au–TiO$_2$ and Au–TS-1 catalysts for the epoxidation of propylene. For example, Ribeiro and Delgass have synthesized Au–TS-1 catalysts by the electroless deposition of Au onto TS-1. Au–TS-1 was found to have maximum

![Fig. 16](image_url) Transmission electron micrograph of Au–TiO$_2$ catalysts with 0.98 wt% Au loading. Reproduced from T. Hayashi, K. Tanaka and M. Haruta, Selective Vapor-Phase Epoxidation of Propylene over Au/TiO2 Catalysts in the Presence of Oxygen and Hydrogen, J. Catal., 178, 566. Copyright 1998 with permission from Elsevier.
PO formation rates \((i.e., 160 \text{ g PO kg}_{\text{cat}}^{-1} \text{ h}^{-1}) \) at low Au loadings (0.1 wt%), where Au clusters were not observable by high-resolution TEM, which suggests that the average cluster diameter was less than 1 nm. The high dispersity of the Au clusters may increase PO formation rates by maximizing the number of Au atoms adjacent to Ti-atoms. Accordingly, the high reaction rates can be attributed to the increased number of exposed Au–Ti sites, which are believed to be an active site for the reduction of \(\text{O}_2 \). It has proven to be difficult to create robust Au–TS-1 catalysts that retain activity and selectivity over long times on stream (>15 days), and consequently, Au–TS-1 has not been implemented in any industrial processes, despite the appeal of this chemistry.

In situ diffuse reflectance UV-vis spectroscopy, \(^{65}\) X-ray absorption near-edge structure (XANES), \(^{408}\) and EPR spectroscopy \(^{409}\) were used to study the formation of Ti–OOH species during the gas-phase epoxidation of propylene with \(\text{H}_2 \) and \(\text{O}_2 \) over Au–TiO\(_2\) catalysts. EPR spectra did not reveal a Ti-(O\(^2^-\)) superoxide anion, but rather suggest that O\(^2^-\) species form on Au atoms, which are likely located at the perimeter of clusters (i.e., border of Au cluster and TiO\(_2\)). *In situ* UV-vis experiments show a broad peak at 360 nm that indicates a Ti–OOH* intermediate is formed (Section 5.1). \(^{65}\) Together these results suggest that \(\text{H}_2\text{O}_2 \) is formed *in situ* over the Au clusters and activates over a Ti atom to create Ti–OOH*, which subsequently epoxidizes propylene, as depicted in Scheme 25.

Neurock and Yates combined DFT and IR spectroscopy to study the

oxidation of CO over Au–TiO₂ with H₂O₂, and their findings suggest that O₂ activates at perimeter sites where Au and TiO₂ contact and form a Au–O–O–Ti complex, which was seen to be an active intermediate for CO oxidation.⁴¹⁰ DFT calculated binding energies of O₂ on Au clusters (−0.16 to −0.51 eV) were much weaker than for O₂ binding at the Au–Ti⁴⁺ perimeter site (−1.01 eV). Consequently, O₂ likely binds and activates preferentially at perimeter sites rather than on the terraces of the TiO₂ or Au clusters. The intrinsic activation energy to form the reactive Au–O–O–Ti species from physisorbed O₂ is relatively low (0.16 eV), which further suggests that this species is a plausible reactive intermediate.⁴¹⁰ In any case, Au–TiO₂ catalysts with small Au clusters are preferential to larger Au clusters (as they lead to higher reaction rates and epoxide selectivities), as the ratio of perimeter sites to total Au used increases, which results in more sites that are active for O₂ activation and subsequent epoxidation reactions.

In the Au–TiO₂ and Au–TS-1 systems discussed above, H₂ was used as a sacrificial reductant to activate O₂ to produce H₂O and an epoxide. H₂O has also been shown to activate O₂ over Au–TiO₂ catalysts, albeit at lower rates, which reduces the need for H₂ (and associated cost). Iglesia et al. showed that reactions of H₂O with O₂ over Au–TiO₂ catalysts create intermediates that epoxidize propylene to form PO.⁴¹¹ Mixtures of H₂O and O₂ co-reactants give PO formation rates that are an order of magnitude lower than the rates observed using comparable mixtures of H₂ and O₂. These lower rates result from a lower thermodynamic driving force for O₂ activation (likely via reduction) from reaction with H₂O as compared to H₂. These results suggest that H₂O and O₂ can form active surface intermediates over Au–TiO₂ despite the fact that the formation of H₂O₂ is highly unfavorable.⁴¹¹ These findings were supported by recent experiments and DFT calculations from Chandler and Grabow that strongly suggest that reactions between adsorbed H₂O and O₂ molecules (i.e., Au·H₂O·O₂*) near Au perimeter atoms form Au–OOH* species, which can react with CO to form CO₂⁴¹² and may be responsible for increased rates of PO formation when H₂O is added to H₂–O₂ mixtures. Chang and coworkers employed DFT to show that Au–OOH* species form on Au–TiO₂ by reactions of H₂O and O₂ through a Langmuir–Hinshelwood mechanism, after which, Au–OOH* produces PO by direct reaction with propylene.⁴¹³ Additionally, a recent mini-review by Chandler and Grabow⁴¹⁴ highlights the importance of H₂O on O₂ activation over Au–TiO₂ catalysts for small-molecule oxidations. The authors note that PO formation was optimized to yield 90% PO selectivity over Au–TiO₂ catalysts, but that formation is not observed in the absence of H₂O. This is particularly interesting as it suggests that following O₂ adsorption, protons are necessary for hydroperoxide (i.e., Au–OOH) formation, which is strikingly similar to the requirement of a protic solution for the direct synthesis of H₂O₂ over Pd clusters.¹⁴⁸

While Au–TiO₂ and Au–TS-1 catalysts appear to be promising epoxidation catalysts, they tend to deactivate irreversibly over time or have low rates of epoxide (typically PO) formation. Additionally, the cost of Au can
be prohibitive which presents the opportunity and challenge of finding similar catalytic systems that can activate O\textsubscript{2} with H\textsubscript{2}O and maintain high selectivities and rates for PO (or other epoxide) formation.

7 Conclusions

H\textsubscript{2}O\textsubscript{2} is an environmentally benign oxidant with the potential to replace chlorinated oxidants for many important industrial processes. Currently, industrial-scale H\textsubscript{2}O\textsubscript{2} production is dominated by the anthraquinone auto-oxidation process, which involves many energy intensive steps such as separation and concentration, necessitating large scale facilities and resulting in H\textsubscript{2}O\textsubscript{2} prices higher than those for chlorinated oxidizers. Direct synthesis of H\textsubscript{2}O\textsubscript{2} avoids these separation and concentration steps, and therefore, has the potential to make cheaper H\textsubscript{2}O\textsubscript{2} (and at smaller scales) than anthraquinone auto-oxidation. Economic analysis of industrial scale direct synthesis indicates that the primary costs, and thus the main factor affecting its competitiveness as an industrial process, stem from the cost of H\textsubscript{2}. This cost holds back direct synthesis because H\textsubscript{2}O is the thermodynamically favored product of direct synthesis, making it difficult to obtain H\textsubscript{2}O\textsubscript{2} selectivities comparable to anthraquinone auto-oxidation. As such, research on direct synthesis has focused on improving H\textsubscript{2}O\textsubscript{2} selectivity through mechanistic understanding of the reaction, catalyst design, and reaction systems engineering.

Selectivity towards H\textsubscript{2}O\textsubscript{2} in direct synthesis has improved over the past two decades through studies of the mechanism, the benefits of acid and halide additives, alloying of metals, and post-synthetic treatments of the catalyst support. Both Langmuir–Hinshelwood and Eley–Rideal mechanisms have been proposed with experimental evidence and DFT calculations supporting both mechanisms, indicating that direct synthesis is a complicated reaction to fully understand. Improved understanding of secondary decomposition of H\textsubscript{2}O\textsubscript{2} and selective reaction conditions have led to more accurate and thorough studies of the reaction mechanism, therefore, each mechanistic study improves significantly upon previous analyses. This growing body of knowledge on the mechanism, as well as improved interest in this field of study, suggest that complete understanding of the mechanism can be expected in the future, allowing for the design of more selective catalysts. It has already been discovered that modification of the catalyst surface, by the adsorption of strongly binding ions (e.g., Cl−, Br−) or through alloying of metals (e.g., AuPd, PdSn), as well as post-synthetic modification of the support with acids can lead to high selectivities. These toxic and caustic additives and expensive alloys are not the complete solution, but instead guide the synthesis of cheap, selective, and environmentally benign catalysts and reaction conditions. Once H\textsubscript{2}O\textsubscript{2} can be made more cheaply, it can lead to cheaper and more environmentally conscious oxidations of various compounds such as simple alkanes (e.g., methane and ethane), alcohols, and sulfides to important industrial precursors and commodity chemicals, many of which have already been investigated on many different transition metal.
containing zeolite catalysts. In general, all the oxidation reactions involving H$_2$O$_2$ are operationally straightforward, clean, and safe, making it a great replacement for the harmful and toxic oxidants which are currently in use. Future work should identify and improve upon catalysts that perform these oxidations, and concomitantly the direct synthesis of H$_2$O$_2$, with high yields and selectivities.

The biggest advances in making economically viable H$_2$O$_2$ for industrial oxidation chemistries have come from understanding the fundamental factors governing olefin epoxidation. Epoxides are important precursors for the production of pharmaceuticals, commodity chemicals, plastics, and epoxy resins. The current production of many industrially relevant epoxides is through reaction with a chlorine-containing acid followed by treatment with a strong base. However, in the case of oxidation chemistry, chlorine is not located in the final product and so waste produced contains toxic halogen-containing molecules. To remedy this, extensive efforts have been made to devise catalysts and catalytic systems that selectively activate H$_2$O$_2$ for olefin epoxidation as the only byproduct is H$_2$O. Extensive work has been conducted to understand the mechanisms of H$_2$O$_2$ activation through spectroscopic/kinetic measurements over transition-metal substituted zeolites, polyoxometalates, supported transition metal oxides, and homogeneous (i.e., methyltrioxorhenium, porphyrin-ligated Fe and Mn compounds, and Schiff-base complexes) catalysts. Currently, there is no “ideal” catalyst for the epoxidation of olefins with H$_2$O$_2$ as the reactivity (i.e., reaction rates) and selectivities can be tuned depending on the reaction conditions (e.g., reactant concentrations, temperature), presence of additive molecules, and immobilization of the catalyst onto a solid support. Alternative catalysts (e.g., Au–TS-1/TiO$_2$ or Pt/Pd–TS-1) have been devised that activate O$_2$ with the use of H$_2$ or H$_2$O as a sacrificial reductant. These catalysts have been mainly studied for the epoxidation of propylene to PO, but tend to have low yields and selectivities. Additionally, there is much work that needs to be done in identifying the mechanism for epoxidation, especially in the case of heterogeneous catalysts, such that more efficient catalysts can be designed both through experimentation and in silico to aid in the discovery of increasingly effective catalysts.

The large body of research on direct synthesis of H$_2$O$_2$ and subsequent oxidation reactions show that there is significant interest in economic and environmental improvements to industrial oxidations. This interest in H$_2$O$_2$ can be seen from the increase in global H$_2$O$_2$ production as well as implementation of new, more energy-efficient processes such as HPPO. The next step will be to achieve direct synthesis selectivities comparable to AO under benign conditions, leading to the construction of industrial scale direct synthesis facilities, and eventually, the epoxidation of olefins following in situ direct synthesis of H$_2$O$_2$. Implementation of more efficient processes for huge global industries, such as epoxidation, will lead to improved conservation of a significant portion of the energy resources available globally.
Acknowledgements

The authors gratefully acknowledge financial support from the National Science Foundation, grant number CBET-1553137, and the U. S. Army Research Office under grant number W911NF-16-1-0128. DTB was supported in part by a National Defense Science and Engineering Graduate (NDSEG) Fellowship.

References

h2o2.com/municipal-applications/wastewater-treatment.aspx?pid=134&,
(accessed July 2016).
22 W. Eul, A. Moeller and N. Steiner, Kirk-Othmer Encyclopedia of Chemical
24 G. Goor, J. Glennberg and S. Jacobi, Ullmann's Encyclopedia of Industrial
2013, 52, 1168.
29 A. Verdaguer-Casadevall, D. Deiana, M. Karamad, S. Siahroostami, P. Malacrida,
2014, 14, 1603.
30 S. Siahroostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana,
P. Malacrida, B. Wickman, M. Escudero-Escribano, E. A. Paoli, R. Frydendal,
2013, 12, 1137.
31 I. Yamanaka, T. Onisawa, T. Hashimoto and T. Murayama, ChemSusChem,
2011, 4, 494.
32 J. S. Jirkovský, I. Panas, E. Ahlberg, M. Halasa, S. Romani and D. J. Schiffrin,
33 H. Goto, Y. Hanada, T. Ohno and M. Matsumura, J. Catal., 2004, 225,
223.
1988, 22, 798.
1999, 38, 706.
37 J. García-Serna, T. Moreno, P. Biasi, M. J. Cocero, J.-P. Mikkola and
38 U.S. Energy Information Administration Annual Energy Outlook 2016 Early
339, 130.
57, 2469.
44 M. Hudlicky, Oxidations in Organic Chemistry, American Chemical Society,
100, 115.
86 B. S. Lane and K. Burgess, *Chem. Rev.*, 2003, 103, 2457.

